首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   510篇
  免费   38篇
  国内免费   2篇
测绘学   9篇
大气科学   40篇
地球物理   129篇
地质学   259篇
海洋学   34篇
天文学   54篇
综合类   3篇
自然地理   22篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   9篇
  2019年   11篇
  2018年   15篇
  2017年   22篇
  2016年   24篇
  2015年   21篇
  2014年   29篇
  2013年   59篇
  2012年   24篇
  2011年   51篇
  2010年   34篇
  2009年   34篇
  2008年   20篇
  2007年   19篇
  2006年   15篇
  2005年   12篇
  2004年   16篇
  2003年   11篇
  2002年   11篇
  2001年   2篇
  2000年   10篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1966年   1篇
  1955年   1篇
排序方式: 共有550条查询结果,搜索用时 31 毫秒
541.
Analyses of long-term field observations (1974–2007) on chlorophyll-a concentrations in the western Wadden Sea showed no long-term trends in the timing of the wax and wane of phytoplankton spring blooms. There is weak evidence, however, that the height of the autumn bloom has decreased since the early 1990s. This fading of the autumn bloom may have had consequences for the carbon transfer to higher trophic levels, currently hampering primary consumer species that mostly rely on food supply during late summer. Current and other findings suggest a shortening of the growing season due to the fading of the autumn bloom in the Wadden Sea and a lengthening of the growing season due to an advancement of the spring bloom in the North Sea. These regionally different changes in seasonality may have contributed to the coinciding decrease in bivalve filtering capacity in the western Wadden Sea and the large-scale offshore shift of juvenile plaice from the Wadden Sea to the adjacent North Sea.  相似文献   
542.
The Earth is surrounded by a layer of relatively thin gas, the mass of which is mainly concentrated in the first kilometres. With an exponential decrease of the density of the atmosphere as a function of altitude, 99.9% of this mass is located in the first 50 km. In addition, the composition of major species is homogeneous up to about 85 km, contrarily to what happens beyond. This is the homosphere. This layer of atmosphere, considered in this special issue, is also that which we breathe and which we unfortunately often pollute. All this justifies considering it as of vital importance, in the most basic sense of the word. However, in studying it, it is not possible to ignore what is happening beyond, from where comes, in particular, solar radiation, just as we cannot ignore what happens below the continents and the oceans, where solar radiation is absorbed, diffused and re-emitted to the top by the Earth's surface as infrared radiation. We must therefore keep in mind what are the layers that surround the homosphere, the importance of observing them and also give some examples of possible interactions which may exist with the surrounding layers; these are the objectives of these introductory remarks. Another general consideration must be made here, concerning the problems, which have existed until the middle of the 20th century, of how to observe the atmosphere in situ at all the altitudes. However, since then, the development of engineering involving balloons, rockets, aircrafts and artificial satellites has revolutionized our knowledge of this observational atmosphere; this is the second message of these remarks.  相似文献   
543.
In the Northern Emirates, Jurassic and Lower Cretaceous platform carbonates of the Musandam parautochthonous units are tectonically overlain by siliciclastic units of the Hawasina–Sumeini allochthon, which derive from the former paleo-slope domain and a more distal basinal portion of the Arabian margin of the Tethys, respectively. All these tectonic units display numerous evidences of paleo-fluid circulations, accounting for dolomitisation and recrystallisation of the rock matrix (Musandam Platform units), as well as cementation of fractures. Polymict breccias of Upper Cretaceous Ausaq Formation which underlay the sole thrust of the Hawasina–Sumeini allochthon also record episodes of hydraulic fracturing, whereas fluid inclusion data indicate precipitation at high temperature in relation to paleo-fluid flow. Petrography of thin-sections (conventional and cathodoluminescence microscopic techniques) as well as fluid inclusion and stable isotopes analyses, were combined with micro-tectonic studies. These analytical data document (1) the paragenetic sequence of diagenetic products for the Musandam Platform (which constitutes a carbonate reservoir analogue) and Sumeini units of the Dibba Zone, as well as (2) the nature of the paleo-fluids circulating along fractures and the sole thrust of the Hawasina–Sumeini allochthon. The main results of this petrographic approach are qualitative, evidencing (1) the rapid and vertical transfer of hot fluids in the vicinity of the former slope to platform transition, accounting for episodes of hydrothermal dolomitisation, as well as (2) early (i.e. pre-orogenic) and late (i.e. post-orogenic) episodes of emersion of the carbonate units, accounting for additional interactions with meteoric fluids and karstification. In order to better link these diagenetic events with the overall burial, thermal and kinematic evolution of the Arabian margin, basin modelling with Ceres2D, including fluid flow and pore-fluid pressure modelling, was subsequently performed along a regional transect (D4) located in the vicinity of the samples localities and cross-cutting the Northern Oman Mountains from Dibba in the east up to the Arabian Gulf in the west. New subsurface constraints provided by deep seismic profiles were used to constrain the architecture of the cross-section, and to test various hypotheses on the lateral and vertical connection, timing and hydrodynamic behaviour of the faults. This Ceres basin modelling also provides new quantitative estimates of the paleo-fluid pathways, of the timing and velocities of the fluid transfers and of the evolution of pore-fluid pressures. Ultimately, this integration of petrographic studies on surface samples and coupled kinematic and fluid flow basin modelling provides an updated scenario for the succession of tectonically controlled episodes of fluid rock interactions, namely dolomitisation and karstification recorded in the Mesozoic platform carbonates of the Northern Emirates.  相似文献   
544.
This study aims at understanding the physico-chemical interactions between the saturated brine and the rocks enclosing the underground salt workings in Lorraine (eastern France). These anhydrite-rich and argillaceous rocks were characterized in terms of mineralogy, micro-texture and connected porosity. Then, the two main lithofacies, massive anhydrite and anhydrite-rich argillite, were immersed in brine during more than 1 year. During this batch experiment, the argillites were affected by macroscopic splitting, contrarily to the massive anhydrite. Micro-texture and brine chemical analyses clearly show the swelling due to the hydration of anhydrite into gypsum inside the argillites, whereas hydration occurs superficially on the massive anhydrite, due to its very low permeability. Anhydrite–gypsum transformation is promoted by the presence of dissolved strontium and potassium in saturated brine. The low activity of water in saturated brine does not allow the clay fraction to swell significantly during the experiment. Thus, the expansion resulting from the hydration of anhydrite into gypsum might be responsible of the splitting of argillite in a saturated brine environment. The superficial anhydrite hydration on massive anhydrite can be explained by the low amount of connected porosity (less than 1%).  相似文献   
545.
Climate change affects not only water resources but also water demand for irrigation. A large proportion of the world’s agriculture depends on groundwater, especially in arid and semi-arid regions. In several regions, aquifer resources face depletion. Groundwater recharge has been viewed as a by-product of irrigation return flow, and with climate change, aquifer storage of such flow will be vital. A general review, for a broad-based audience, is given of work on global warming and groundwater resources, summarizing the methods used to analyze the climate change scenarios and the influence of these predicted changes on groundwater resources around the world (especially the impact on regional groundwater resources and irrigation requirements). Future challenges of adapting to climate change are also discussed. Such challenges include water-resources depletion, increasing irrigation demand, reduced crop yield, and groundwater salinization. The adaptation to and mitigation of these effects is also reported, including useful information for water-resources managers and the development of sustainable groundwater irrigation methods. Rescheduling irrigation according to the season, coordinating the groundwater resources and irrigation demand, developing more accurate and complete modeling prediction methods, and managing the irrigation facilities in different ways would all be considered, based on the particular cases.  相似文献   
546.
The IPSL-CM5A climate model was used to perform a large number of control, historical and climate change simulations in the frame of CMIP5. The refined horizontal and vertical grid of the atmospheric component, LMDZ, constitutes a major difference compared to the previous IPSL-CM4 version used for CMIP3. From imposed-SST (Sea Surface Temperature) and coupled numerical experiments, we systematically analyze the impact of the horizontal and vertical grid resolution on the simulated climate. The refinement of the horizontal grid results in a systematic reduction of major biases in the mean tropospheric structures and SST. The mid-latitude jets, located too close to the equator with the coarsest grids, move poleward. This robust feature, is accompanied by a drying at mid-latitudes and a reduction of cold biases in mid-latitudes relative to the equator. The model was also extended to the stratosphere by increasing the number of layers on the vertical from 19 to 39 (15 in the stratosphere) and adding relevant parameterizations. The 39-layer version captures the dominant modes of the stratospheric variability and exhibits stratospheric sudden warmings. Changing either the vertical or horizontal resolution modifies the global energy balance in imposed-SST simulations by typically several W/m2 which translates in the coupled atmosphere-ocean simulations into a different global-mean SST. The sensitivity is of about 1.2 K per 1 W/m2 when varying the horizontal grid. A re-tuning of model parameters was thus required to restore this energy balance in the imposed-SST simulations and reduce the biases in the simulated mean surface temperature and, to some extent, latitudinal SST variations in the coupled experiments for the modern climate. The tuning hardly compensates, however, for robust biases of the coupled model. Despite the wide range of grid configurations explored and their significant impact on the present-day climate, the climate sensitivity remains essentially unchanged.  相似文献   
547.
Chalcedony is a spatial arrangement of hydroxylated nanometre-sized α-quartz (SiO2) crystallites that are often found in association with the silica mineral moganite (SiO2). A supplementary Raman band at 501 cm−1 in the chalcedony spectrum, attributed to moganite, has been used for the evaluation of the quartz/moganite ratio in silica rocks. Its frequency lies at 503 cm−1 in sedimentary chalcedony, representing a 2 cm−1 difference with its position in pure moganite. We present a study of the 503 cm−1 band’s behaviour upon heat treatment, showing its gradual disappearance upon heating to temperatures above 300 °C. Infrared spectroscopic measurements of the silanole (SiOH) content in the samples as a function of annealing temperature show a good correlation between the disappearance of the 503 cm−1 Raman band and the decrease of structural hydroxyl. Thermogravimetric analyses reveal a significant weight loss that can be correlated with the decreasing of this Raman band. X-ray powder diffraction data suggest the moganite content in the samples to remain stable. We propose therefore the existence of a hitherto unknown Raman band at 503 cm−1 in chalcedony, assigned to ‘free’ Si–O vibrations of non-bridging Si–OH that oscillate with a higher natural frequency than bridging Si–O–Si (at 464 cm−1). A similar phenomenon was recently observed in the infrared spectra of chalcedony. The position of this Si–OH-related band is nearly the same as the Raman moganite band and the two bands may interfere. The actually observed Raman band in silica rocks might therefore be a convolution of a silanole and a moganite vibration. These findings have broad implications for future Raman spectroscopic studies of moganite, for the assessment of the quartz/moganite ratio, using this band, must take into account the contribution from silanole that are present in chalcedony and moganite.  相似文献   
548.
Among the Middle Penninic basements of the Internal NW-Alps, the Ruitor massif shows the best preserved remnants of pre-Permian metamorphic rocks. Their Barrovian-type mineral associations are somewhat masked by the greenschist to blueschist Alpine metamorphism of Tertiary age. Four Ruitor gneisses have been analysed, showing geochemical characters of granitoids from orogenic zones. Zircon morphology also suggests magmatic protoliths and a crustal source; some of the morphological zircon types suggest anatectic granites. The first U-Pb ages on zircon for this massif have been obtained concurrently through conventional multigrain and ion microprobe dating. Two metavolcanic rocks at 471LJ and 468ᆪ Ma could be slightly older than the porphyritic augen gneisses at 465ᆟ and 460lj Ma. Regional data from the other Internal basement massifs suggest that the Variscan event is poorly recorded, except in Ruitor-type units. Ruitor and Sapey gneisses belonged to the same unit (Nappe des Pontis), which was affected by a 480-450-Ma event including volcanism and anatexis and ended with a late calc-alkaline granite emplacement at 460-450 Ma. The distribution of Variscan basement units roughly parallels Alpine zonation.  相似文献   
549.
Detachment faulting at slow spreading ocean ridge axes is recognized as a major surface creation mechanism, yet the structural relationships of these faults with feeder-dykes of on-axis volcanoes remained unresolved. This summary study shows that surface creation leading to ocean widening is exclusively controlled by detachment faults, shallow tracers of tectonic stresses induced by the westward drift of plates. Volcanoes are fed by feeder-dykes following on-axis rotational detachment faults. Once formed volcanoes are dragged along the detachment whose footwall is made of mantle material sometimes hosting gabbro sills. Due to the faster drift of the uppermost lithospheric layer, the feeder-dykes are then intersected by active deeper low-angle detachments, become inactive and are replaced by new ones on-axis. Rooted vertically on either side of the plate boundary, the detachment flexing is all the earlier and more progressive as the faults are far from the axis, positioning gabbro as sills at shallow level within a deformed mantle interspersed with cataclasite horizons. Correlations between shallow and deep lithospheric processes are then clarified.  相似文献   
550.

Reservoir simulators model the highly nonlinear partial differential equations that represent flows in heterogeneous porous media. The system is made up of conservation equations for each thermodynamic species, flash equilibrium equations and some constraints. With advances in Field Development Planning (FDP) strategies, clients need to model highly complex Improved Oil Recovery processes such as gas re-injection and CO2 injection, which requires multi-component simulation models. The operating range of these simulation models is usually around the mixture critical point and this can be very difficult to simulate due to phase mislabeling and poor nonlinear convergence. We present a Machine Learning (ML) based approach that significantly accelerates such simulation models. One of the most important physical parameters required in order to simulate complex fluids in the subsurface is the critical temperature (Tcrit). There are advanced iterative methods to compute the critical point such as the algorithm proposed by Heidemann and Khalil (AIChE J 26,769–799, 1980) but, because these methods are too expensive, they are usually replaced by cheaper and less accurate methods such as the Li-correlation (Reid and Sherwood 1966). In this work we use a ML workflow that is based on two interacting fully connected neural networks, one a classifier and the other a regressor, that are used to replace physical algorithms for single phase labelling and improve the convergence of the simulator. We generate real time compositional training data using a linear mixing rule between the injected and the in-situ fluid compositions that can exhibit temporal evolution. In many complicated scenarios, a physical critical temperature does not exist and the iterative sequence fails to converge. We train the classifier to identify, a-priori, if a sequence of iterations will diverge. The regressor is then trained to predict an accurate value of Tcrit. A framework is developed inside the simulator based on TensorFlow that aids real time machine learning applications. The training data is generated within the simulator at the beginning of the simulation run and the ML models are trained on this data while the simulator is running. All the run-times presented in this paper include the time taken to generate the training data and train the models. Applying this ML workflow to real field gas re-injection cases suffering from severe convergence issues has resulted in a 10-fold reduction of the nonlinear iterations in the examples shown in this paper, with the overall run time reduced 2- to 10-fold, thus making complex FDP workflows several times faster. Such models are usually run many times in history matching and optimization workflows, which results in compounded computational savings. The workflow also results in more accurate prediction of the oil in place due to better single phase labelling.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号