首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   16篇
  国内免费   2篇
测绘学   6篇
大气科学   17篇
地球物理   48篇
地质学   97篇
海洋学   46篇
天文学   57篇
自然地理   42篇
  2021年   2篇
  2019年   5篇
  2018年   2篇
  2017年   7篇
  2016年   9篇
  2015年   11篇
  2014年   6篇
  2013年   19篇
  2012年   15篇
  2011年   9篇
  2010年   14篇
  2009年   13篇
  2008年   10篇
  2007年   12篇
  2006年   10篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   7篇
  1996年   6篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   9篇
  1982年   9篇
  1981年   4篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1972年   7篇
  1971年   8篇
  1970年   2篇
  1967年   2篇
  1959年   1篇
  1954年   1篇
  1940年   1篇
排序方式: 共有313条查询结果,搜索用时 15 毫秒
91.
Modal analyses of 273 different peridotites representing 43 dredge stations in the Atlantic, Caribbean, and Indian Oceans define three separate melting trends. Peridotites dredged in the vicinity of “mantle plumes” or hot spots have the most depleted compositions in terms of basaltic components, while peridotites dredged at locations removed from such regions are systematically less depleted. The modal data correlate well with mineral compositions, with the peridotites most depleted in pyroxene also having the most refractory mineral compositions. This demonstrates that they are the probable residues of variable degrees of mantle melting. Further, there is a good correlation between the modal compositions of the peridotites and the major element composition of spatially associated dredged basalts. This demonstrates for the first time that the two must be directly related, as is frequently postulated. The high degree of depletion of the peridotites in basaltic major element components in the vicinity of some documented mantle plumes provides direct evidence for a thermal anomaly in such regions—justifying their frequent designation as “hot spots”. The high incompatible element concentrations in these “plume” basalts, however, are contrary to what is expected for such high degrees of melting, and thus require either selective contributions from locally more abundant enriched veins and/or contamination by a volatile-rich metasomatic front from depth.  相似文献   
92.
93.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   
94.
95.
A lightweight, inexpensive jig for splitting 7.6 cm diameter vibracores is described. The advantage of the jig is its simplicity, low cost and portability to the coring site whether on land, ice or a boat. Core splitting at the coring site can guide additional coring activity, similar to other coring devices that extrude sediment as part of the coring process. The simple jig ensures straight and even cuts through the aluminum tube wall, leading to precise core splitting in the field or lab.  相似文献   
96.
A study of normal faults in the Nubian Sandstone Sequence, from the eastern Gulf of Suez rift, has been conducted to investigate the relationship between the microstructure and petrophysical properties of cataclasites developed along seismic-scale faults (slip-surface cataclasites) and smaller displacement faults (deformation bands) found in their damage zones. The results help to quantify the uncertainty associated with predicting the fluid flow behaviour of seismic-scale faults by analysing small faults recovered from core, a common procedure in the petroleum industry. The microstructure of the cataclasites was analysed as well as their single-phase permeability and threshold pressure. Faulting occurred at a maximum burial depth of ∼1.2 km. The permeability of deformation band and slip-surface cataclasites varies over ∼1.5 orders of magnitude for a given fault. Our results suggest that the lowest measured deformation band permeabilities provide a good estimate for the arithmetic-mean permeability of the major slip-surface cataclasites. This is because the cataclastic permeability reduction is mostly established early in the deformation history. Stress at the time of faulting rather than final strain appears to be the critical factor determining fault rock permeability. For viable predictions it is important that the slip-surface cataclasites and deformation bands originate from the same host. On the other hand, a higher uncertainty is associated with threshold pressure predictions, as the arithmetic-mean slip-surface cataclasite threshold pressure exceeds the highest measured deformation band threshold pressure by at least a factor of 4.  相似文献   
97.
Overpressure generation is a function of the rates of sedimentation, compaction, fluid generation from kerogen and dehydration of minerals, and most importantly the lateral distribution of permeability within a basin as this controls lateral drainage. Sedimentary basins, however, are typically highly heterogeneous with respect to primary sedimentary facies, diagenesis and tectonic development. While fluid flow models based on idealised homogeneous basins may further our understanding of the processes that influence overpressure development, the results are very sensitive to the distribution of rock properties, particularly permeability. The absolute permeability of sedimentary rocks varies from more than 1 Darcy to less than 0.01 nanodarcy (nD) (10−11 Darcy).  相似文献   
98.
This article reflects on the past 30 years of academic research in the field of spatial data quality and tries to identify the main achievements, failures, and opportunities for future research. Most of this reflection results from a panel discussion that took place during the Sixth International Symposium on Spatial Data Quality (ISSDQ) in July 2009.  相似文献   
99.
100.
Jupiter's equatorial atmosphere, much like the Earth's, is known to show quasi-periodic variations in temperature, particularly in the stratosphere, but variations in other jovian atmospheric tracers have not been studied for any correlations to these oscillations. Data taken at NASA's Infrared Telescope Facility (IRTF) from 1979 to 2000 were used to obtain temperatures at two levels in the atmosphere, corresponding to the upper troposphere (250 mbar) and to the stratosphere (20 mbar). We find that the data show periodic signals at latitudes corresponding to the troposphere zonal wind jets, with periods ranging from 4.4 (stratosphere, 95% confidence at 4° S planetographic latitude) to 7.7 years (troposphere, 97% confidence at 6° N). We also discuss evidence that at some latitudes the troposphere temperature variations are out of phase from the stratosphere variations, even where no periodicity is evident. Hubble Space Telescope images were used, in conjunction with Voyager and Cassini data, to track small changes in the troposphere zonal winds from 20° N to 20° S latitude over the 1994-2000 time period. Oscillations with a period of 4.5 years are found near 7°-8° S, with 80-85% significance. Further, the strongest evidence for a QQO-induced tropospheric wind change tied to stratospheric temperature change occurs near these latitudes, though tropospheric temperatures show little periodicity here. Comparison of thermal winds and measured zonal winds for three dates indicate that cloud features at other latitudes are likely tracked at pressures that can vary by up to a few hundred millibar, but the cloud altitude change required is too large to explain the wind changes measured at 7° S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号