首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5358篇
  免费   247篇
  国内免费   26篇
测绘学   313篇
大气科学   428篇
地球物理   1468篇
地质学   1963篇
海洋学   392篇
天文学   715篇
综合类   51篇
自然地理   301篇
  2024年   23篇
  2023年   35篇
  2022年   47篇
  2021年   125篇
  2020年   130篇
  2019年   108篇
  2018年   443篇
  2017年   314篇
  2016年   333篇
  2015年   245篇
  2014年   295篇
  2013年   356篇
  2012年   246篇
  2011年   342篇
  2010年   290篇
  2009年   305篇
  2008年   240篇
  2007年   192篇
  2006年   193篇
  2005年   152篇
  2004年   144篇
  2003年   132篇
  2002年   109篇
  2001年   79篇
  2000年   72篇
  1999年   45篇
  1998年   83篇
  1997年   51篇
  1996年   48篇
  1995年   40篇
  1994年   39篇
  1993年   29篇
  1992年   35篇
  1991年   25篇
  1990年   34篇
  1989年   20篇
  1988年   21篇
  1987年   15篇
  1986年   14篇
  1985年   18篇
  1984年   11篇
  1983年   17篇
  1982年   14篇
  1981年   13篇
  1980年   12篇
  1978年   7篇
  1977年   6篇
  1975年   6篇
  1972年   11篇
  1965年   8篇
排序方式: 共有5631条查询结果,搜索用时 12 毫秒
11.
An atlas of susceptibility to pollution of 320 Spanish marinas is provided. Susceptibility is assessed through a simple, fast and low cost empirical method estimating the flushing capacity of marinas. The Complexity Tidal Range Index (CTRI) was selected among eleven empirical methods. The CTRI method was selected by means of statistical analyses because: it contributes to explain the system's variance; it is highly correlated to numerical model results; and, it is sensitive to marinas' location and typology. The process of implementation to the Spanish coast confirmed its usefulness, versatility and adaptability as a tool for the environmental management of marinas worldwide. The atlas of susceptibility, assessed through CTRI values, is an appropriate instrument to prioritize environmental and planning strategies at a regional scale.  相似文献   
12.
13.
14.
15.
Field and laboratory studies have indicated that rock fragments in the topsoil may have a large impact on soil properties, soil quality, hydraulic, hydrological and erosion processes. In most studies, the rock fragments investigated still remain visible at the soil surface and only properties of these visible rock fragments are used for predicting runoff and soil loss. However, there are indications that rock fragments completely incorporated in the topsoil could also significantly influence the percolation and water distribution in stony soils and therefore, also infiltration, runoff and soil loss rates. Therefore, in this study interrill laboratory experiments with simulated rainfall for 60 min were conducted to assess the influence of subsurface rock fragments incorporated in a disturbed silt loam soil at different depths below the soil surface (i.e. 0.001, 0.01, 0.05 and 0.10 m), on infiltration, surface runoff and interrill erosion processes for small and large rock fragment sizes (i.e. mean diameter 0.04 and 0.20 m, respectively). Although only small differences in infiltration rate and runoff volume are observed between the soil without rock fragments (control) and the one with subsurface rock fragments, considerable differences in total interrill soil loss are observed between the control treatment and both contrasting rock fragments sizes. This is explained by a rapid increase in soil moisture in the areas above the rock fragments and therefore a decrease in topsoil cohesion compared with the control soil profile. The observed differences in runoff volume and interrill soil loss between the control plots and those with subsurface rock fragments is largest after a cumulative rainfall (Pcum) of 11 mm and progressively decreases with increasing Pcum. The results highlight the impacts and complexity of subsurface rock fragments on the production of runoff volume and soil loss and requires their inclusion in process‐based runoff and erosion models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
16.
IAG Newsletter     
  相似文献   
17.
18.
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index \({LAI}< 4\). In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI \(=\) 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with \({LAI}\approx 1\), the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with \({LAI}< 4\) where soil uptake also has a role in ozone deposition.  相似文献   
19.
The next generation of climate-driven, disease prediction models will most likely require a mechanistically based, dynamical framework that parameterizes key processes at a variety of locations. Over the next two decades, consensus climate predictions make it possible to produce forecasts for a number of important infectious diseases that are largely independent of the uncertainty of longer-term emissions scenarios. In particular, the role of climate in the modulation of seasonal disease transmission needs to be unravelled from the complex dynamics resulting from the interaction of transmission with herd immunity and intervention measures that depend upon previous burdens of infection. Progress is also needed to solve the mismatch between climate projections and disease projections at the scale of public health interventions. In the time horizon of seasons to years, early warning systems should benefit from current developments on multi-model ensemble climate prediction systems, particularly in areas where high skill levels of climate models coincide with regions where large epidemics take place. A better understanding of the role of climate extremes on infectious diseases is urgently needed.  相似文献   
20.
Yb-Y inter-diffusion along a single grain boundary of a synthetic yttrium aluminium garnet (YAG) bicrystal has been studied using analytical transmission electron microscopy (ATEM). To investigate the diffusion, a thin-film containing Yb as the diffusant was deposited perpendicular to the bicrystal grain boundary by pulsed laser deposition (PLD). Structural properties and their change with time in both the diffusant source and the grain boundary are reported. The diffusion profiles are incorporated in a numerical diffusion model, which is applied to determine the grain boundary diffusion coefficient, D gb , at 1.723 K it is equal to 3 × 10−15 m2/s. We find that grain boundary diffusion is 4.85 orders of magnitude faster than volume diffusion, which was determined from the same diffusion experiment. This result is discussed in the context of special versus general grain boundaries. Finally, we successfully tested the capability of synchrotron-based nano-X-ray fluorescence analysis to map micro-chemical patterns in two dimensions with sub-micrometre resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号