首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   19篇
  国内免费   4篇
测绘学   16篇
大气科学   15篇
地球物理   113篇
地质学   90篇
海洋学   31篇
天文学   54篇
综合类   2篇
自然地理   19篇
  2024年   1篇
  2021年   11篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   15篇
  2016年   26篇
  2015年   14篇
  2014年   17篇
  2013年   21篇
  2012年   24篇
  2011年   23篇
  2010年   22篇
  2009年   26篇
  2008年   15篇
  2007年   14篇
  2006年   11篇
  2005年   18篇
  2004年   11篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1988年   2篇
  1983年   1篇
排序方式: 共有340条查询结果,搜索用时 0 毫秒
1.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
We apply the ztrace algorithm to the optical NOG and infrared PSC z galaxy catalogues to reconstruct the pattern of primordial fluctuations that have generated our local Universe. We check that the density fields traced by the two catalogues are well correlated, and consistent with a linear relation [either in δ or in  log (1 +δ)  ] with relative bias (of NOG with respect to PSC z )   b rel= 1.1 ± 0.1  . The relative bias relation is used to fill the optical zone of avoidance at  | b | < 20°  using the PSC z galaxy density field.
We perform extensive testing on simulated galaxy catalogues to optimize the reconstruction. The quality of the reconstruction is predicted to be good at large scales, up to a limiting wavenumber   k lim≃ 0.4 h Mpc−1  beyond which all information is lost. We find that the improvement arising from the denser sampling of the optical catalogue is compensated by the uncertainties connected to the larger zone of avoidance.
The initial conditions reconstructed from the NOG catalogue are found (analogously to those from the PSC z ) to be consistent with a Gaussian paradigm. We use the reconstructions to produce sets of initial conditions ready to be used for constrained simulations of our local Universe.  相似文献   
3.
4.
The synthetic amphibole Na0.95(Li0.95Mg1.05)Mg5Si8O22(OH)2 was studied in situ at high-T, using IR OH-stretching spectroscopy and synchrotron X-ray powder diffraction. At room-T the sample has P21 /m symmetry, as shown by the FTIR spectrum. It shows in the OH region two well-defined and intense absorptions at 3,748 and 3,712 cm−1, respectively, and two minor bands at 3,667 and 3,687 cm−1. The main bands are assigned to the two independent O–H groups in the primitive structure. The two minor bands evidencing the presence of small amount of vacant A-site (A0.05). With increasing T, these bands shift continuously and merge into a unique absorption at high temperature. A change as a function of increasing T is revealed by the evolution of the refined unit-cell parameters, whose trend shows a transition to C2/m at about 320–330°C. The spontaneous scalar strain, fitted with a tricritical 2–6 Landau potential, gives a T c of 325(10)°C (β parameter = 0.27). Comparison with the second-order P21 /mC2/m phase transition at 255°C for synthetic amphibole ANa0.8B(Na0.8Mg1.2)CMg5Si8O22(OH)2 indicates that the substitution of Na with Li at the B-sites strongly affects the thermodynamic character and the T c of the phase transition. The comparison of LNMSH amphiboles with cummingtonitic ones shows that the high-T thermodynamic behaviour is affected by A-site occupancy.  相似文献   
5.
This work focuses on developing multidisciplinary researches concerning weathering profiles related to landscape evolution of the Capo Vaticano promontory on the Calabria Tyrrhenian side (southern Italy). In this area, the tectonic uplift, occurred at least since Pleistocene, together with the Mediterranean climatic conditions, is the main cause of deep weathering and denudation processes. The latter occurred on the outcropping rocks of the crystalline-metamorphic basement, made up of weathered granitoids, in turn belonging to the Monte Poro granitoid complex (intermediate to felsic plutonic rocks covered by Cenozoic sedimentary successions). Field observations coupled to borehole explorations, geophysical surveys, and minero-petrographical analyses allowed the characterization of the granitoid outcrops typical of the studied area in terms of kind and degree of slope instability. This characterization was based on suitable correlations verified between several factors as weathering degree, elastic properties of rocks, and discontinuity features. Weathering profiles are mainly composed by rock masses varying from completely weathered rock with corestones of highly weathered rock (classes IV–V) to slightly weathered rocks (class II). The weathered rocks are involved in several landslide typologies such as debris flow (frequency 48.5%), translational slide (frequency 33.3%), and minor rock fall and rotational slide (frequency 9%). The achieved data allowed the establishment of a general correlation between weathering degree and type of slope instability. Debris flow-type instabilities are predominant on the steeper slopes, involving very poor rock masses ascribed to the shallowest portions of the weathering class IV. Translational slides are less widespread than the previous ones and often involve a mixture of soil and highly weathered rocks. Rotational slides are more frequently close to the top of the slopes, where the thicknesses of more weathered rocks increase, and involve mainly rock masses belonging to the weathering classes IV and V. Rock falls mostly occur on the vertical escarpments of the road cuts and are controlled by the characteristics of the main discontinuities. The assessment of rock mass rating and slope mass rating, based on the application of the discontinuity data, allowed respectively an evaluation of the quality of rock masses and of the susceptibility of rock slopes to failure. The comparison between the last one and the real stability conditions along the cut slopes shows a good correspondence. Finally, the geological strength index system was also applied for the estimation of rock mass properties. The achieved results give a worthy support for a better understanding of the relationship between the distribution of landslides and the geological features related to different weathering degrees. Therefore, they can provide a reliable tool to evaluate the potential stability conditions of the rock slopes in the studied area and a general reference framework for the study of weathering processes in other regions with similar geological features.  相似文献   
6.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   
7.
8.
Near-seabed (<50 m) sediments were studied throughout the Irish sector of the Rockall Trough (ca. 123,000 km2) based on a combined analysis of shallow seismic (3.5 kHz) and multibeam swath data acquired by the Irish National Seabed Survey and reprocessed here at higher resolution. The detailed identification of seven acoustic facies served to classify the Rockall Trough into six main sedimentary provinces, incorporating the well-known Feni Drift, Donegal-Barra Fan and Rockall Bank mass flow. In the northern part of the study area, extensive mass transport deposits from both flanks of the trough are the dominant depositional features. Debris flow deposits formed by ice streaming of the British-Irish ice sheet characterise most of the Donegal-Barra Fan, whereas turbidite deposition occurs towards the toe of the fan. On the western margin of the trough, the post-glacial Rockall Bank mass flow deposit displays a rough topography with no acoustic penetration. Several failure scarps are visible on the flank of the bank where the mass flow originated, and pass downslope into large sediment lobes and smaller debris flow deposits. Smaller-scale mass transport deposits were also discovered close to some canyons indenting the eastern slope. High seismic penetration characterises the Feni contourite drift deposit, and precise mapping of its geographical extent shows that it is considerably wider than previously reported. The sediment waves that drape this drift are interpreted as predominantly relict features, and their varied geometry suggests a complex oceanographic regime. In the deeper part of the trough, the data reveal novel evidence of the widespread occurrence (about 12,000 km2) of distinct seismic and backscatter signatures indicating the possible presence of fluid escape structures within fine-grained sediments of mixed contouritic, hemipelagic and turbiditic origin. Sediment overloading and increased pore pressure resulting from extensive mass wasting to the north of the area is a likely cause of dewatering-rooted fluid migration towards the seabed, but further investigations are required to confirm the nature and origin of such fluids in the Rockall Trough.  相似文献   
9.
The present work investigates the time oscillations of the temperature at several depths of a Martian soil analogue made of two layers of different physical properties. The maximum temperature-time oscillation inside the Martian soil analogue, DT, and its derivative with depth, d(DT)/dz or DDT, can be analysed to understand the presence of a boundary between dry and frozen soil. The maximum temperature-time oscillation, DT, reduces by about one order of magnitude at the boundary between dry and frozen soil if a frozen layer is present. The reduction of DT at the boundary between two dry soils with different porosity is much smaller. DDT decreases by more than one order of magnitude at the boundary between dry and frozen soil if a frozen layer is present. The reduction of DDT at the boundary between two dry soils with different porosity is much smaller.  相似文献   
10.
The DArk Matter Particle Explorer(DAMPE),also known as Wukong in China,which was launched on 2015 December 17,is a new high energy cosmic ray and γ-ray satellite-borne observatory.One of the main scientific goals of DAMPE is to observe Ge V-Te V high energy γ-rays with accurate energy,angular and time resolution,to indirectly search for dark matter particles and for the study of high energy astrophysics. Due to the comparatively higher fluxes of charged cosmic rays with respect to γ-rays,it is challenging to identify γ-rays with sufficiently high efficiency,minimizing the amount of charged cosmic ray contamination. In this work we present a method to identify γ-rays in DAMPE data based on Monte Carlo simulations,using the powerful electromagnetic/hadronic shower discrimination provided by the calorimeter and the veto detection of charged particles provided by the plastic scintillation detector. Monte Carlo simulations show that after this selection the number of electrons and protons that contaminate the selected γ-ray events at~10 Ge V amounts to less than 1% of the selected sample.Finally,we use flight data to verify the effectiveness of the method by highlighting known γ-ray sources in the sky and by reconstructing preliminary light curves of the Geminga pulsar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号