首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25987篇
  免费   364篇
  国内免费   213篇
测绘学   520篇
大气科学   1939篇
地球物理   5199篇
地质学   9056篇
海洋学   2106篇
天文学   6011篇
综合类   47篇
自然地理   1686篇
  2021年   161篇
  2020年   197篇
  2019年   209篇
  2018年   497篇
  2017年   462篇
  2016年   566篇
  2015年   436篇
  2014年   606篇
  2013年   1211篇
  2012年   731篇
  2011年   1015篇
  2010年   875篇
  2009年   1219篇
  2008年   1052篇
  2007年   1053篇
  2006年   978篇
  2005年   818篇
  2004年   837篇
  2003年   799篇
  2002年   739篇
  2001年   688篇
  2000年   636篇
  1999年   571篇
  1998年   576篇
  1997年   576篇
  1996年   440篇
  1995年   419篇
  1994年   380篇
  1993年   335篇
  1992年   311篇
  1991年   276篇
  1990年   304篇
  1989年   281篇
  1988年   235篇
  1987年   311篇
  1986年   257篇
  1985年   346篇
  1984年   384篇
  1983年   371篇
  1982年   335篇
  1981年   310篇
  1980年   312篇
  1979年   282篇
  1978年   311篇
  1977年   263篇
  1976年   267篇
  1975年   275篇
  1974年   234篇
  1973年   238篇
  1972年   158篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Zusammenfassung Die Mineralzusammensetzung der Nadeleisenerzooide Ostbayerns aus dem Dogger wurde optisch, röntgenographisch und die chemische Zusammensetzung spektralanalytisch ermittelt. In den Ooidkernen wurden folgende Minerale festgestellt: Nadeleisenerz, Quarz, Ilmenit und seine Verwitterungsprodukte, Zirkon, Rutil, Magnetit, Hämatit, Turmalin und Granat. In der Ooidschale wurde außer Nadeleisenerz Kaolinit (10–15%) und etwas Illit nachgewiesen.Die Art der Ooidkerne, die Festlandsnähe und die geochemischen Befunde weisen auf eine exogen sedimentäre Bildung der Eisenerzlagerstätte in dem Dogger Ostbayerns hin.  相似文献   
942.
Moore  M. H.  Hudson  R. L.  Ferrante  R. F. 《Earth, Moon, and Planets》2003,92(1-4):291-306
Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO → C3O2). New IR spectra are reported for the 1–5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.  相似文献   
943.
The preliminary results of the analysis of more than 1000 spectra of cataclysmic variables in the archive of the International Ultraviolet Explorer were presented at the meeting. To characterize the slope of the spectra I useF=log(f 1460Å/f 2880Å). For most spectraF lies between 0.2 and 0.7. No correlation of F with orbital period, inclination, system type or (for dwarf novae) length of the interoutburst interval are found, apart from somewhat lower values ofF for DQ Her type systems. Out of 16 dwarf novae for which spectra both at outburst maximum and minimum are available 11 show no large difference inF between maximum and minimum, and in 5F declines with the flux level. Out of 6 dwarf novae 5 show very red spectra during the rise to maximum, and 1 shows slopes during rise similar to those during decline.In the ultraviolet resonance lines, due to a wind from the disc, no correlation is found between inclination and terminal velocity.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
944.
Seasonal mass balance components bw (winter balance) and bs (summer balance) as well as ct (total accumulation) and at (total ablation), can be used directly to infer climate variables. In contrast, ac (net balance of the accumulation area) and aa (net balance of the ablation area), and ba or bn (annual or net balance) can not. The traditional Alpine system of observations of ac and aa , however, can be converted to true seasonal values bw and bs if both pairs of components are simultaneously observed for some years, because a correlation between the two pairs of components exists. We analyzed bw and bs data and their mean, standard deviations and ratios of these to the corresponding net or annual balances for 50 glaciers with relatively long records representing different regions in the northern hemisphere. We also investigated correlations between seasonal components. A negative correlation between bw and bs exists at many glaciers. About two-thirds of the glaciers show insignificant correlations (?0.3 < r < 0.3), implying independence of summer and winter balances. In a few unusual cases the correlations are positive. These different correlations, or lack thereof, may offer insight into feedback conditions that must exist in this climate-related system. The correspondence of the bw and ct , and bs and at , appears to depend largely on the relative amounts of summer snowfall, a function of their climatic environment expressed as [α = (bw+bs)/2]. The contribution of variability of bs to the net balance increases markedly with decreasing values of α. The variability of bw and bs , and therefore the net balance, has been increasing with time; whether this is due to an increase in climate variability or to other causes is not clear. It appears that bw has been increasing with time at the highest altitudes, but bs has been increasing more rapidly especially at low altitudes; the many-glacier average net balance is becoming more negative.  相似文献   
945.
946.
The areal geological-geophysical study of Quaternary sediments was carried out in two areas of the eastern Barents Sea (Central Deep and Murmansk Bank). This communication is mainly dedicated to the results of seismoacoustic investigations. It has been established that the Quaternary sequence unconformably overlying the pre-Cenozoic strata in the studied areas is as follows (from bottom to top): marine-glaciomarine Late Glacial-Holocene sediments, massive diamictons (the main part of the section), and glaciotectonites formed after the underlying Mesozoic unconsolidated sediments. The Pleistocene diamictons, origin of which is still debatable, are the main studied object. They constitute two seismostratigraphic complexes (SSC). According to the accepted stratigraphic subdivision, they are represented by the Upper Weichselian SSC III (Maximum Last Glaciation) and Lower Weichselian SSC V (Middle Weichselian SSC IV is eroded here). Complexes SSC V and SSC III composed of till overlie the older sediments with the exaration unconformity. Complex SSC V is preserved locally, while SSC III is characterized by the regional distribution. Complex SSC III is universally enveloped unconformably without erosional surface by an acoustically uniform thin-bedded member of Late Glacial-Holocene glaciomarine and marine sediments (SSC II+I). Unlike SSC V, SSC III demonstrates lateral heterogeneity in both studied areas consisting of two seismofacies, one of which forms very specific acoustically transparent bodies (ATBs). Sediments of SSC III avoided subsequent erosion. Therefore, their glacial nature is distinctly reflected in the complex distribution of thickness and peculiar morphology of corresponding bodies.  相似文献   
947.
Zonation of landscapes is generally based on broad scale biophysical data, field surveys, imagery and expert knowledge. Such zonation represents a static view of the environment and does not reflect dynamics and function. Arid environments are however often highly dynamic, and spatial and temporal patterns may be expressed over long periods of time. These dynamics need to be understood for management. Our aim is to understand the dynamics and functional response of vegetation in the Australian arid zone, and use this to inform and potentially improve the currently employed stratification. Principal component analysis of 25 years of satellite imagery identified underlying factors influencing patterns of arid vegetation growth, and regions of similar long-term response. Dominant factors of variation were identified as the spatial distribution of total vegetation growth, seasonality of growth, magnitude of seasonal variability in growth, and regularity of variation in growth. Additional variation resulted from episodic vegetation growth of limited spatial extent and duration. Classes expressing these functional components were compared with the existing biogeographical regions, revealing agreement in some instances, and in other cases adding information previously not available. The study demonstrates a new approach to Australian landscape zonation that has potential for much wider application.  相似文献   
948.
The behavior of long-term changes in water resources of the transboundary Samur river is considered. It is found that there has been taking place a decrease in the river water flow rate over the course of the last four decades. Results from analyzing the ecological releases indicate that they would suffice to maintain the ecosystem of the river near its mouth in an acceptable state.  相似文献   
949.
RecentR-matrix calculations of electron impact excitation rates in Ov are used to derive the emission line intensity ratios (in energy units) $$\begin{gathered} R_1 = I(2s2p^{ 3} P - 2p^{2 3} P)/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(761.1\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ R_2 = I(2s^{2 1} S_0 - 2s2p^{ 3} P_1 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(1218.4\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ ), \hfill \\ \end{gathered} $$ and $$R_3 = I(2s2p^{ 1} P_1 - 2p^{2 1} S_0 )/I(2s^{2 1} S_0 - 2s2p^{ 1} P_1 ) = I(774.5\mathop A\limits^ \circ )/I(629.7\mathop A\limits^ \circ )$$ as a function of electron temperature (T e) and density (N e). These results are presented as plots ofR 1 vsR 2, andR 1 vsR 3, which should allowboth N e andT e to be deduced for the Ov line emitting region of a plasma. Electron densities derived from the (R 1,R 2) and (R 1,R 3) diagrams in conjunction with observational data for several solar features obtained with the Harvard S-055 spectrometer on boardSkylab are found to be compatible, and in good agreement with values ofN e estimated from line ratios in species formed at similar electron temperatures to Ov. In addition, values ofT e determined from (R 1,R 2) and (R 1,R 3) are generally close to that expected theoretically. These results provide experimental support for the accuracy of the diagnostic calculations presented in this paper, and hence the atomic data used in their derivation.  相似文献   
950.
This is a comprehensive review paper devoted to microdiamonds from ultrahigh-pressure metamorphic (UHPM) terranes incorporated in orogenic belts formed at convergent plate boundaries in Paleozoic-Mesozoic-Alpine time. When in 1980 the first small diamonds were discovered within “amphibolite-granulate facies” metamorphic rocks, it came as a great surprise that buoyant continental crust could be subducted to depths of hundreds of kilometers and then subsequently exhumed. Since then, much progress has been made in understanding the mechanism of these diamonds' formation, and the number of new diamond-bearing UHPM terranes was significantly increased, especially within European orogenes. Moreover, new variations in tectonic settings in which UHP rocks can be formed and exhumed came to the attention of geologists simply due to the finding of diamonds in places previously “forbidden” for their formation—e.g., oceanic islands, ophiolites, and forearc environments. Over the past decade, the rapidly moving technological advancement has made it possible to examine microdiamonds in detail and to learn that part of them has a polycrystalline nature; that they contain nanometric, multiphase inclusions of crystalline and fluid phases; and that they keep a “crustal” signature of carbon isotopes. Scanning and transmission electron microscopy, focused-ion-beam techniques, synchrotron infrared spectroscopy, micro X-ray diffraction, and nano-secondary ion mass spectrometry studies of these diamonds provide evidence that they keep traces of fluid originated from both crustal and mantle reservoirs, and that they probably interacted with deep mantle plumes. Hypotheses proposed for diamond formation in subduction zones founded on both analytical and experimental studies are discussed. The paper also emphasizes that the discovery of these microdiamonds (as well as coesite) triggered a major revision in the understanding of deep subduction processes, leading to a clear realization of how continental materials can be recycled into the Earth's mantle and geochemically rejuvenate it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号