首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   3篇
  国内免费   4篇
大气科学   9篇
地球物理   23篇
地质学   39篇
海洋学   2篇
天文学   28篇
综合类   1篇
自然地理   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   10篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
排序方式: 共有103条查询结果,搜索用时 46 毫秒
41.
We present an unprecedented multicentennial sediment record from the foot of Vesterisbanken Seamount, central Greenland Sea, covering the past 22.3 thousand years (ka). Based on planktic foraminiferal total abundances, species assemblages, and stable oxygen and carbon isotopes, the palaeoenvironments in this region of modern deepwater renewal were reconstructed. Results show that during the Last Glacial Maximum the area was affected by harsh polar conditions with only episodic improvements during warm summer seasons. Since 18 ka extreme freshwater discharges from nearby sources occurred, influencing the surface water environment. The last major freshwater event took place during the Younger Dryas. The onset of the Holocene was characterized by an improvement of environmental conditions suggesting warming and increasing ventilation of the upper water layers. The early Holocene saw a stronger Atlantic waters advection to the area, which began around 10.5 and ended quite rapidly at 5.5 ka, followed by the onset of Neoglacial cooling. Surface water ventilation reached a maximum in the middle Holocene. Around 3 ka the surface water stratification increased leading to subsequent amplification of the warming induced the North Atlantic Oscillation at 2 ka.  相似文献   
42.
CyberShake: A Physics-Based Seismic Hazard Model for Southern California   总被引:2,自引:0,他引:2  
CyberShake, as part of the Southern California Earthquake Center??s (SCEC) Community Modeling Environment, is developing a methodology that explicitly incorporates deterministic source and wave propagation effects within seismic hazard calculations through the use of physics-based 3D ground motion simulations. To calculate a waveform-based seismic hazard estimate for a site of interest, we begin with Uniform California Earthquake Rupture Forecast, Version 2.0 (UCERF2.0) and identify all ruptures within 200?km of the site of interest. We convert the UCERF2.0 rupture definition into multiple rupture variations with differing hypocenter locations and slip distributions, resulting in about 415,000 rupture variations per site. Strain Green Tensors are calculated for the site of interest using the SCEC Community Velocity Model, Version 4 (CVM4), and then, using reciprocity, we calculate synthetic seismograms for each rupture variation. Peak intensity measures are then extracted from these synthetics and combined with the original rupture probabilities to produce probabilistic seismic hazard curves for the site. Being explicitly site-based, CyberShake directly samples the ground motion variability at that site over many earthquake cycles (i.e., rupture scenarios) and alleviates the need for the ergodic assumption that is implicitly included in traditional empirically based calculations. Thus far, we have simulated ruptures at over 200 sites in the Los Angeles region for ground shaking periods of 2?s and longer, providing the basis for the first generation CyberShake hazard maps. Our results indicate that the combination of rupture directivity and basin response effects can lead to an increase in the hazard level for some sites, relative to that given by a conventional Ground Motion Prediction Equation (GMPE). Additionally, and perhaps more importantly, we find that the physics-based hazard results are much more sensitive to the assumed magnitude-area relations and magnitude uncertainty estimates used in the definition of the ruptures than is found in the traditional GMPE approach. This reinforces the need for continued development of a better understanding of earthquake source characterization and the constitutive relations that govern the earthquake rupture process.  相似文献   
43.
Modern digital conductivity meters are readily portable, robust, cheap, and give precisely reproducible values of specific electrical conductivity (SpC, in µS cm?1). Here we investigate the accuracy of their estimates of the amounts of gypsum dissolved in waters collected in gypsum karst terrains, expressed as total hardness (TH) in mg L?1 of CaSO4·2H2O (GYP). Total dissolved solid concentrations (TDS) are also considered. Curves obtained with the program PHREEQC, for the dissolution of pure gypsum in water at 25 C, are compared with 574 comprehensive water chemical analyses selected from gypsum karst studies in Europe and the Americas. Principal common and foreign ions encountered are the BNC group (bicarbonates, nitrates, chlorides). It is found that GYP = 1·12·SpC + 62 where BNC < 33% (Cl? < 5%), with one standard error <5% for waters with SpC > 2400 µS cm?1; GYP = 0·74·SpC + 777 where BNC < 33% (5% ≤ Cl? < 15%), with one standard error <10% for waters with SpC > 3100 µS cm?1; GYP = 0·97·SpC ? 209 where BNC < 33% and Cl? ≥ 15%, with one standard error <10% for samples with SpC > 4300 µS cm?1. There are similar results for the more complex waters found in gypsum karsts where much carbonate rock or salt is also present, to the limit of BNC < 50% for what may reasonably be defined as ‘gypsum waters’. Values of R2 for linear correlations of different subsets of the water samples range from 0·69 to 0·96, the majority being >0·8. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
44.
In the Rhenodanubian Flysch Zone of Austria, between the Aptian–Albian “Gault Flysch” and the Cenomanian–Turonian Reiselsberg Formation, an interval with predominant red shales (“Untere Bunte Schiefer”) occurs. In the Oberaschau section near Attersee (Upper Austria) a ca. 18-m-thick interval of alternating red and grey shales and marlstones with minor sandstones is present. Thin sandstone intercalations are interpreted as distal turbidites. Dinoflagellate cyst assemblages indicate the Litosphaeridium siphoniphorum Zone. The concurrent presence of Litosphaeridium siphoniphorum and Ovoidinium verrucosum in all samples allows a correlation to the lower part of this zone, thus defining a Late Albian–Early Cenomanian age. Based on foraminifera, the red beds can be assigned to the topmost Rotalipora appenninica Zone and the Rotalipora globotruncanoides Zone due to the presence of small morphotypes of the index taxa. Nannofossils indicate standard zones CC9/UC0 throughout the red interval, defined by the first occurrence of Eiffellithus turriseiffelii, and UC1 above the red shales. Based on these multistratigraphic data, a latest Albian–Early Cenomanian age can be inferred.  相似文献   
45.
The witokrzyski Horst, created during the Laramide phase, is situated in the central part of the Mid Polish Uplands. It is composed of folded Paleozoic rocks partly covered by Mesozoic sediments. In this area two tectonostratigraphic units can be distinguished: the Kielce Unit to the S and the ysogóry Unit to the N.They are separated by the WNW-ESE trending witokrzyski overthrust, along which the rocks of the ysogóry Unit have been transported towards the south over the Kielce Unit. Thrusting took place after the Early Carboniferous, and before the Permian. As it is concluded from the differences of their stratigraphic and tectonic evolution, these two juxtaposed units of the witokrzyskie Mts were originally set at a considerable distance one from another. The present area of these units developed in two blocks of crust differing in structure, thickness and evolution. It is proposed that the important fault situated north of the witokrzyski overthrust and accompanied by magmatic phenomena could be a reactivation of a Variscan suture zone.
Zusammenfassung Im Zentrum des Polnischen Mittelgebirges entstand während der laramischen Phase der witokrzyski Horst. Er besteht aus gefalteten Gesteinen, die zum Teil mit mesozoischen Ablagerungen bedeckt sind. Es lassen sich in diesem Gebiet zwei geologische Einheiten unterscheiden, die in Bau und Entwicklung wesentliche Unterschiede aufweisen: die Kielce-Einheit im S und die ysogóry-Einheit im N. Diese Einheiten werden von der WNW-OSO vorlaufenden witokrzyski-Überschiebung voneinander getrennt, an der die Gesteine des ysogóry-Einheit nach SW auf die gefalteten Ablagerungen der Kielce-Einheit überschoben worden sind. Dieser Vorgang erfolgte während der variszischen Orogenese, und zwar nach dem Unterkarbon und vor dem Oberen Perm.Die Unterschiede in der stratigraphischen und tektonischen Entwicklung der Kielce-Einheit und der ysogóry-Einheit deuten darauf hin, daß die beiden Einheiten vor der variszischen Gebirgsbildung weit voneinander entfernt gelegen haben: zwischen beiden lag im Unterkarbon ein tiefes Becken. Darauf deuten sowohl die im nördlichen Teil der Kielce-Einheit auftretenden bathypelagischen Ablagerungen aus dem Visé, als auch Spuren vulkanischer Tätigkeit.Die nördlich der witokrzyski-Überschiebung gelegene Störung, an der zahlreiche magmatische und hydrothermale Erscheinungen auftreten, ist wahrscheinlich das Relikt einer während der variszische Orogenese entstandene Suturzone.

Résumé Le horst de Swietokrzyski, situé dans la partie centrale des «Uplands» de la Pologne moyenne, s'est formé au cours de la phase laramide. Il est constitué de roches paléozoïques plissées partiellement recouvertes de sédiments mésozoïques. Dans cette région, on distingue deux unités tectono-stratigraphiques: l'unité de Kielce au sud et celle de Lysogory au nord. Elles sont séparées par le charriage de Swietokrzyski, d'orientation WNW-ESE, suivant lequel les roches de l'unité de Lysogory ont été transportées vers le SW sur l'unité de Kielce. Ce charriage a eu lieu après le Carbonifère inférieur et avant le Permien. Les différences d'histoires stratigraphiques et tectoniques qui existent entre ces deux unités ainsi juxtaposées indiquent qu'elles devaient se trouver à l'origine à grande distance l'une de l'autre: elles étaient séparées au Carbonifère inférieur par un bassin profond. En témoignent les dépôts bathy-pélagiques viséens, ainsi que des traces d'activité volcanique dans la partie nord de l'unité de Kielce.La faille importante située au nord du charriage, faille jalonée par de multiples manifestations magmatiques et hydrothermales, est probablement la trace d'une zone de suture engendrée au cours de l'orogenèse varisque.

. , . : , . WNW-ESE, , . . , . , . . . , , , , , .
  相似文献   
46.
The combined effects of active tectonics and anthropogenic activities, primarily geothermal resources exploitation for electricity production in Cerro Prieto geothermal field, influence the ground surface deformation in Cerro Prieto basin, Baja California, Mexico. In this study, a large set of multi-sensor C-band SAR images have been employed to reconstruct the spatiotemporal evolution of aseismic ground surface deformation that has affected Cerro Prieto basin from 1993 to 2014. Conventional DInSAR together with the interferograms stacking procedure was applied. The results showed that the study area presented considerable surface deformation (mainly subsidence) during the entire time of the investigation. The main changes in rate and pattern of surface deformation have a good correlation in time and space with the changes in production in the Cerro Prieto geothermal field. Comparison of LOS displacement maps from different viewing geometries, and decomposition (where possible) of LOS displacement into vertical and horizontal (east–west) components, revealed considerable horizontal displacement which mostly reflects the ground movement at and beyond the margin of the subsidence basin toward the areas of highest subsidence rates. In addition, the validation of the DInSAR results by comparing them against measurements from leveling surveys was performed, confirming the high reliably of satellite interferometry for the ground surface deformation rate mapping in the study area.  相似文献   
47.
In 2005 and 2006, hydrogeochemical study was carried out in the bipartite Wiśniówka Mała pit lake of the Holy Cross Mountains (south-central Poland). This is the largest acidic water body in Poland. This report presents the element concentrations in the water and sediment, stable sulfur and oxygen isotope ratios in the soluble sulfates, and stable oxygen isotope ratio in the water. The scope of the investigation also encompassed mineralogical examinations (scanning electron microscope, X-ray diffraction) of the sediment. The results of this study show that there is a spatial and temporal variability in concentrations of most elements and sulfur isotope ratios in the examined pit lake. The water of the western pond displayed a lower pH with a mean of 3.73 and higher conductivity (390 μS cm−1) as well as higher concentrations of sulfates (156 mg L−1) and most of the cations and anions. The concentrations of Fe2+ and Fe3+ averaged 0.8 and 0.4 mg·L−1. In contrast, the eastern pond water revealed a higher pH (mean of 4.36), lower conductivity (293 μS cm−1) and lower sulfate (90 mg L−1) and trace metal levels. Similar variations were recorded in the stable sulfur isotope ratios. The δ34SV-CDT(SO4 2−) values in the water of the western pit pond were in the range of −6.7 to −4.6‰ (mean of −5.6‰), whereas that in the eastern pit pond ranged from −2.2 to −0.9‰ (−1.6‰). The alkalinity of the entire lake water was below 0.1 mg·L−1 CaCO3. No distinct difference in the δ18OV-SMOW(SO4 2−) was noted between the western and eastern pit ponds. Compared to the Purple Pond in the Sudetes (Poland) and similar sites throughout the world, the examined pit lake is highlighted by distinctly low concentrations of sulfates, iron and other trace metals. Based on this and other studies performed in the Holy Cross Mountains, a conclusion can be drawn that the SO4 2− in the Wiśniówka Mała pit lake water is a mixture of SO4 2− derived from the following sources: (1) pyrite oxidation (especially in the western pond water), (2) leaching of soluble sulfates from soils and waste material, as well as (3) subordinate deposition of airborne sulfate precipitation.  相似文献   
48.
The circulation, water masses and sea-ice of Baffin Bay   总被引:2,自引:0,他引:2  
The oceanographic, meteorological and sea-ice conditions in Baffin Bay are studied using historical hydrographic, satellite and meteorological data, and a set of current meter data from a mooring program of the Bedford Institute of Oceanography. Baffin Bay is partially covered by sea-ice all year except August and September. The interannual variation of the ice extent is shown to be correlated with winter air temperature. Available hydrographic data were used to study the water masses and the horizontal and vertical distribution of temperature/salinity. Three water masses can be identified – Arctic Water in the upper 100–300 m of all regions except the southeast, West Greenland Intermediate Water at 300–800 m in most of the interior of Baffin Bay, and Deep Baffin Bay Water in all regions below 1200 m. The temperature and salinity in Baffin Bay have limited seasonal variability except in the upper 300 m of eastern Davis Strait, northern Baffin Bay and the mouth of Lancaster Sound. Summer data have a temperature minimum at 100 m, which suggests winter convection does not penetrate deeper than this depth. Current meter data and results of a circulation model indicate that the mean circulation is cyclonic. The seasonal variation of the currents is complex. Overall, summer and fall tend to have stronger currents than winter and spring at all depths. Among the different regions, the largest seasonal variation occurs at the mouth of Lancaster Sound and the Baffin Island slope. Model generated velocity fields show a basic agreement with the observed currents, and indicate strong topographic control in the vicinity of Davis Strait and on the Greenland shelves. The model also produces a southward counter current on the Greenland slope, which may explain the observed high horizontal shears over the Greenland slope. Estimates of the volume and fresh water transports through Lancaster, Jones and Smith Sounds are reviewed. Transports through Davis Strait are computed from the current meter data. The balance of freshwater budget and sensitivity of the thermohaline circulation to freshwater transport are discussed.  相似文献   
49.
We present a new method to identify semi-periodic sequences in the occurrence times of large earthquakes, which allows for the presence of multiple semi-periodic sequences and/or events not belonging to any identifiable sequence in the time series. The method, based on the analytic Fourier transform, yields estimates of the departure from periodicity of an observed sequence, and of the probability that the sequence is not due to chance. These estimates are used to make and to evaluate forecasts of future events belonging to each sequence. Numerous tests with synthetic catalogs show that the method is surprisingly capable of correctly identifying sequences, unidentifiable by eye, in complicated time series. Correct identification of a given sequence depends on the number of events it contains, on the sequence’s departure from periodicity, and, in some cases, on the choice of starting and ending times of the analyzed time window; as well as on the total number of events in the time series. Some particular data combinations may result in spectra where significant periods are obscured by large amplitudes artifacts of the transform, but artifacts can be usually recognized because they lack harmonics; thus, in most of these cases, true semi-periodic sequences may not be identified, but no false identifications will be made. A first example of an application of the method to real seismicity data is the analysis of the Parkfield event series. The analysis correctly aftcasts the September 2004 earthquake. Further applications to real data from Japan and Venezuela are shown in a companion paper.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号