首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   16篇
  国内免费   5篇
测绘学   31篇
大气科学   62篇
地球物理   146篇
地质学   151篇
海洋学   66篇
天文学   63篇
综合类   2篇
自然地理   58篇
  2022年   7篇
  2021年   11篇
  2020年   9篇
  2019年   9篇
  2018年   26篇
  2017年   11篇
  2016年   16篇
  2015年   11篇
  2014年   27篇
  2013年   34篇
  2012年   23篇
  2011年   31篇
  2010年   33篇
  2009年   41篇
  2008年   34篇
  2007年   31篇
  2006年   15篇
  2005年   18篇
  2004年   19篇
  2003年   13篇
  2002年   17篇
  2001年   8篇
  2000年   12篇
  1999年   12篇
  1998年   14篇
  1997年   7篇
  1996年   12篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1991年   4篇
  1990年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1974年   3篇
  1971年   3篇
  1970年   4篇
  1958年   1篇
  1955年   1篇
  1952年   1篇
  1949年   1篇
  1943年   1篇
  1940年   1篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
561.
We inferred the climate history for Central Asia over the past 20,000 years, using sediments from core QH07, taken in the southeastern basin of Lake Qinghai, which lies at the northeastern margin of the Tibetan Plateau. Results from multiple environmental indicators are internally consistent and yield a clear late Pleistocene and Holocene climate record. Carbonate content and total organic carbon (TOC) in Lake Qinghai sediments are interpreted as indicators of the strength of the Asian summer monsoon. Warm and wet intervals, associated with increased monsoon strength, are indicated by increased carbonate and TOC content. During the glacial period (~20,000 to ~14,600 cal year BP), summer monsoon intensity remained low and relatively constant at Lake Qinghai, suggesting cool, dry, and relatively stable climate conditions. The inferred stable, cold, arid environment of the glacial maximum seems to persist through the Younger Dryas time period, and little or no evidence of a warm interval correlative with the Bølling–Allerød is found in the QH07 record. The transition between the late Pleistocene and the Holocene, about 11,500 cal year BP, was abrupt, more so than indicated by speleothems in eastern China. The Holocene (~11,500 cal year BP to present) was a time of enhanced summer monsoon strength and greater variability, indicating relatively wetter but more unstable climatic conditions than those of the late Pleistocene. The warmest, wettest part of the Holocene, marked by increased organic matter and carbonate contents, occurred from ~11,500 to ~9,000 cal year BP, consistent with maximum summer insolation contrast between 30°N and 15°N. A gradual reduction in precipitation (weakened summer monsoon) is inferred from decreased carbonate content through the course of the Holocene. We propose that changes in the contrast of summer insolation between 30°N and 15°N are the primary control on the Asian monsoon system over glacial/interglacial time scales. Secondary influences may include regional and global albedo changes attributable to ice-cover and vegetation shifts and sea level changes (distance from moisture source in Pacific Ocean). The abruptness of the change at the beginning of the Holocene, combined with an increase in variability, suggest a threshold for the arrival of monsoonal rainfall at the northeastern edge of the Tibetan Plateau.  相似文献   
562.
The ability of a large ensemble of regional climate models to accurately simulate heat waves at the regional scale of Europe was evaluated. Within the EURO-CORDEX project, several state-of-the art models, including non-hydrostatic meso-scale models, were run for an extended time period (20 years) at high resolution (12 km), over a large domain allowing for the first time the simultaneous representation of atmospheric phenomena over a large range of spatial scales. Eight models were run in this configuration, and thirteen models were run at a classical resolution of 50 km. The models were driven with the same boundary conditions, the ERA-Interim re-analysis, and except for one simulation, no observations were assimilated in the inner domain. Results, which are compared with daily temperature and precipitation observations (ECA&D and E-OBS data sets) show that, even forced by the same re-analysis, the ensemble exhibits a large spread. A preliminary analysis of the sources of spread, using in particular simulations of the same model with different parameterizations, shows that the simulation of hot temperature is primarily sensitive to the convection and the microphysics schemes, which affect incoming energy and the Bowen ratio. Further, most models exhibit an overestimation of summertime temperature extremes in Mediterranean regions and an underestimation over Scandinavia. Even after bias removal, the simulated heat wave events were found to be too persistent, but a higher resolution reduced this deficiency. The amplitude of events as well as the variability beyond the 90th percentile threshold were found to be too strong in almost all simulations and increasing resolution did not generally improve this deficiency. Resolution increase was also shown to induce large-scale 90th percentile warming or cooling for some models, with beneficial or detrimental effects on the overall biases. Even though full causality cannot be established on the basis of this evaluation work, the drivers of such regional differences were shown to be linked to changes in precipitation due to resolution changes, affecting the energy partitioning. Finally, the inter-annual sequence of hot summers over central/southern Europe was found to be fairly well simulated in most experiments despite an overestimation of the number of hot days and of the variability. The accurate simulation of inter-annual variability for a few models is independent of the model bias. This indicates that internal variability of high summer temperatures should not play a major role in controlling inter-annual variability. Despite some improvements, especially along coastlines, the analyses conducted here did not allow us to generally conclude that a higher resolution is clearly beneficial for a correct representation of heat waves by regional climate models. Even though local-scale feedbacks should be better represented at high resolution, combinations of parameterizations have to be improved or adapted accordingly.  相似文献   
563.
Extensive observations of comet 260P/McNaught were carried out between August 2012 and January 2013. The images obtained were used to analyze the comet’s inner coma morphology at resolutions ranging from 250 to about 1000 km/pixel. A deep investigation of the dust features in the inner coma allowed us to identify only a single main active source on the comet’s nucleus, at an estimated latitude of ?50°±15°. A thorough analysis of the appearance and of the motion of the morphological structures, supported by graphic simulations of the geometrical conditions of the observations, allowed us to determine a pole orientation located within a circular spot of a 15°-radius centered at RA=60°, Dec=0°. The rotation of the nucleus seems to occur on a single axis and is not chaotic, furthermore no precession effects could be estimated from our measurements. The comet’s spin axis never reached the plane of the sky from October 2012 to January 2013; during this period it did not change its direction significantly (less than 30°), thus giving us the opportunity to observe mainly structures such as bow-shaped jets departing from the single active source located on the comet’s nucleus. Only during the months of August 2012 and January 2013 the polar axis was directed towards the Earth at an angle of about 45° from the plane of the sky; this made it possible to observe the development of faint structures like fragments of shells or spirals. A possible rotation period of 0.340±0.01 days was estimated by means of differential photometric analysis.  相似文献   
564.
Obtaining realistic land-surface states for initial and boundary conditions is important for the numerical weather prediction of many atmospheric phenomena. Here we investigate model sensitivity to land use and snow cover for a persistent wintertime cold-air pool in northern Utah during 1–8 January 2011. A Weather Research and Forecast model simulation using the 1993 United States Geological Survey land-use and North American Mesoscale model reanalysis snow-cover datasets is compared to an improved configuration using the modified 2011 National Land Cover Database and a more realistic representation of snow cover. The improved surface specification results in an increase (decrease) in urban land cover (Great Salt Lake surface area), and changes to the snow-cover initialization, depth, extent, and albedo. The results obtained from the model simulations are compared to observations collected during the Persistent Cold-Air Pool Study. The changes in land use and snow cover and the resulting impacts on the surface albedo and surface heat fluxes contributed to near-surface air temperature increases of 1–\(2\,^{\circ }\hbox {C}\) in urban areas and decreases of 2–\(4\,^{\circ }\hbox {C}\) in areas surrounding the Great Salt Lake. Although wind speeds in the boundary layer were overestimated in both simulations, shallow thermally-driven and terrain-forced flows were generally lessened in intensity and breadth in response to the decreased areal extent of the Great Salt Lake and increases in the urban footprint.  相似文献   
565.
Summary Basically two different evaluation methods are available to compute geoid heights from residual gravity anomalies in the inner zone: numerical integration and least squares collocation.If collocation is not applied to a global gravity data set, as is usually the case in practice, its result will not be equal to the numerical integration result. However, the cross covariance function between geoid heights and gravity anomalies can be adapted such that the geoid contribution is computed only from a small gravity area up to a certain distance o from the computation point. Using this modification, identical results are obtained as from numerical integration.Applying this modification makes the results less dependent on the covariance function used. The difference between numerical integration and collocation is mainly caused by the implicitly extrapolated residual gravity anomaly values, outside the original data area. This extrapolated signal depends very much on the covariance function used, while the interpolated values within the original data area depend much less on it.As a sort of by-product, this modified collocation formula also leads to a new combination technique of numerical integration and collocation, in which the optimizing practical properties of both methods are fully exploited.Numerical examples are added as illustration.  相似文献   
566.
Accurate wind modeling is important for wind resources assessment and wind power forecasting.To improve the WRF model configuration for the offshore wind modeling over the Baltic Sea,this study per-formed a sensitivity study of the WRF model to multiple model configurations,including domain setup,grid resolution,sea surface temperature,land surface data,and atmosphere-wave coupling.The simu-lated offshore wind was evaluated against LiDAR observations under different wind directions,atmo-spheric stabilities,and sea status.Generally,the simulated wind profiles matched observations,despite systematic underestimations.Strengthening the forcing from the reanalysis data through reducing the number of nested domains played the largest role in improving wind modeling.Atmosphere-wave cou-pling further improved the simulated wind,especially under the growing and mature sea conditions.Increasing the vertical resolution,and updating the sea surface temperature and the land surface infor-mation only had a slight impact,mainly visible during very stable conditions.Increasing the horizontal resolution also only had a slight impact,most visible during unstable conditions.Our study can help to improve the wind resources assessment and wind power forecasting over the Baltic Sea.  相似文献   
567.
Abstract

This paper examines the potential effects of urbanization on streamflow in Maine, USA, from 1950 to 2000. The study contrasts nine watersheds in southern Maine, which has seen steady urban growth over the study period, with nine rural watersheds from northern Maine. Historical population data and current land cover data are used to develop an urbanization score for each watershed. Trends in watershed urbanization over the study period are compared to trends in ecologically relevant streamflow characteristics. The results indicate that trends in northern, rural watersheds are much more consistent than the trends in the southern watersheds. Additionally, trends in the southern watersheds are inconsistent with the hydrological characteristics observed in urban watersheds elsewhere, likely due to the comparatively low level of current urban development in Maine's urban watersheds. Our study suggests that urban areas in Maine have not yet reached an urbanization threshold where streamflow impacts become consistently detectable.

Editor Z.W. Kundzewicz

Citation Martin, E.H., Kelleher, C., and Wagener, T., 2012. Has urbanization changed ecological streamflow characteristics in Maine (USA)? Hydrological Sciences Journal, 57 (7), 1337–1354.  相似文献   
568.
Land use regulations are an important but often underrated legal domain. In densely populated regions such as the Netherlands, spatial plans have a profound impact on both (local) governments and citizens. This article describes our work on a ‘Legal Atlas’. Using Semantic Web technology we combine distributed geospatial data, textual data and controlled vocabularies to support users in answering questions such as: “What activity is allowed here?” Spatial norms are represented using OWL 2 in a way that enables intuitive visualisation of their effects: map‐based legal case assessment. Users can represent a (simple) case by selecting or drawing an area on the map. Given a designation for that area, the system can assess whether this is allowed or not. The same solution also enables the comparison of two or more sets of spatial norms that govern the same region. We discuss the advantages and drawbacks of a number of alternative solutions for representing and integrating metadata of spatial plans, and the representation of normative conflicts and exceptions between norms.  相似文献   
569.
Cuartas  J. B.  Frazier  Tim  Wood  Erik 《Natural Hazards》2021,108(3):2919-2938

How societies organize themselves to respond to cascading impacts exacerbated by climate change will help define the future of disaster planning, mitigation, response, and recovery. Current emergency management risk analyses focus on identifying a broad array of threats and hazards that may affect an area. However, there is limited attention and understanding of the totality of hazard impacts, the relationship of consequences across disasters, and the dangers of not addressing critical capabilities necessary to rapidly managing consequences—including the potential to create new incidents within incidents. Through a focused review of the related literature and guiding policy documents, this study aims to provide a cascading consequence-based framework that can support emergency managers in the analysis of their jurisdictional risks, development of emergency operations plans, and decision-making. Results include the identification of an alternative framework to identify cascading networks, the creation of a supplementary model for downstream risk assessment, and refined Threat and Hazard Identification and Risk Analysis (THIRA) outputs for improved grant allocation. The proposed framework has the potential to help organizations factor both conspicuous and downstream consequences into their Emergency Operations Plans in the planning and mitigations phases. This proposed refinement, which looks deeper into the progression of a disaster, has both national and international implications.

  相似文献   
570.
In the Baltic Sea, the Gulf of Bothnia is the only sub-basin with only minor effects of eutrophication mainly due to physical factors. Most evaluations of the state of the Gulf of Bothnia are based on offshore investigations. In the present study the coastal zone of the eastern Gulf of Bothnia is analysed. Long-term data (1980–2007) of total nitrogen and phosphorus, turbidity and oxygen are analysed using principal component analysis (PCA) for spatial and temporal patterns in the trophic situation. The coastal zone is divided into six regions: inner and outer areas of the Bothnian Sea and the Quark, and the outer areas of the southern and northern Bothnian Bay. The results show a degradation of water quality from north to south, and from outer to inner coastal areas. Eutrophication changes from an almost non-existing problem in the Bothnian Bay in the north to clear signs of nutrient over-enrichment in the Bothnian Sea. This shows that even if eutrophication in the Gulf of Bothnia is not serious, the increasing trends in nutrient levels should be seen as warning signals for the future, and remedies to combat eutrophication should be taken rapidly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号