首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
测绘学   1篇
地质学   4篇
海洋学   1篇
天文学   19篇
自然地理   1篇
  2018年   2篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有26条查询结果,搜索用时 312 毫秒
11.
12.
We present a photometric study of three chromospherically active stars with long periods (V340 Gem, SAO 62042 and FI Cnc). The observations were made at the ÇOMU Observatory in 2006 and 2007. We have made initial photometric analyses of V340 Gem and SAO 62042, which are newly discovered RS CVn–type SB1 binaries, and established the photometric variations of FI Cnc, which is a single G8III active star. Photometric rotation periods of these stars were obtained by analyzing their light variations. The light variations, observed over three or more consecutive orbital cycles, were investigated by using spot models with the program SPOT. We also discussed the surface differential rotation coefficient for the primary component of the SB1 binary star SAO 62042 in this study, using our own photometric period together with an orbital period taken from the literature.  相似文献   
13.
Subaerial weathering level, source area and tectonic environments were interpreted by using petrographic and geochemical characteristics of Eocene age sandstones found in the eastern Pontides. The thickness of Eocene age clastic rocks in the eastern Pontides ranges from 195 to 400 m. Mineralogical components of sandstones were mainly quartz, feldspar, rock fragments, and opaque and accessory minerals. Depending on their matrix and mineralogical content, Eocene age sandstones are identified as arkosic arenite-lithic arenite and feldspathic wacke-lithic wacke. CIA (Chemical Index of Alteration) values observed in the Eocene age sandstones (43–55) suggest that the source terrain of the sandstones was not affected by intense chemical weathering. Low CIW/CIA (Chemical Index of Weathering/Chemical Index of Alteration) values of the sandstones studied here suggest only slightly decomposed material and having undergone little transport until final deposition. Zr/Hf, Th/Sc, La/Sc and CIA ratios are low and demonstrate a mafic source; on the other hand, high LREE/HREE ratios and a slightly negative Eu anomaly indicate a subordinate fclsic source. Modal mineralogical and SiO2/Al2O3 and K2O/Na2O and Th, Zr, Co, Sc of Eocene age sandstone contents indicate that they are probably magmatic arc originated and deposited in the back arc basin.  相似文献   
14.
The properties of the hot zone in the accretion flow near the surface of a magnetized white dwarf have been studied. For this purpose, the aperiodic optical variability of LS Peg, one of the brightest intermediate polars in the northern sky, has been investigated. The main radiation of the hot zone, which is then reemitted in the optical band, results from the radiation of an optically thin plasma heated during the passage of the accretion flow of a standing shock. Recently, Semena and Revnivtsev (2012) have shown that the aperiodic variability (flickering) of accreting magnetized white dwarfs should have a characteristic feature in the range of Fourier frequencies corresponding to the plasma cooling time in this hot region. The photometric brightness measurements for LS Peg made with the RTT-150 telescope using a high-speed ANDOR iXon CCD array have allowed the break frequency in the power spectrum of the source’s variability to be constrained. Constraints on the geometry of the accretion column for the white dwarf in LS Peg and on the plasma parameters in it have been obtained.  相似文献   
15.
We present the spectroscopic orbit solutions of three double-lines eclipsing binaries, BG Ind, IM Mon and RS Sgr. The first precise radial velocities (RVs) of the components were determined using high resolution echelle spectra obtained at Mt. John University Observatory in New Zealand. The RVs of the components of BG Ind and RS Sgr were measured using Gaussian fittings to the selected spectral lines, whereas two-dimensional cross-correlation technique was preferred to determine the RVs of IM Mon since it has relatively short orbital period among the other targets and so blending of the lines is more effective. For all systems, the Keplerian orbital solution was used during the analysis and also circular orbit was adopted because the eccentricities for all targets were found to be negligible. The first precise orbit analysis of these systems gives the mass ratios of the systems as 0.894, 0.606 and 0.325, respectively for BG Ind, IM Mon and RS Sgr. Comparison of the mass ratio values, orbital sizes and minimum masses of the components of the systems indicates that all systems should have different physical, dynamical and probable evolutionary status.  相似文献   
16.
Using available astrometric and radial velocity data, the space velocities of cataclysmic variables (CVs) with respect to Sun were computed and kinematical properties of various sub-groups of CVs were investigated. Although observational errors of systemic velocities (γ) are high, propagated errors are usually less than computed dispersions. According to the analysis of propagated uncertainties of the computed space velocities, available sample was refined by removing the systems with the largest propagated uncertainties so that the reliability of the space velocity dispersions was improved. Having a dispersion of 51±7kms-1 for the space velocities, CVs in the current refined sample (159 systems) are found to have 5 ± 1 Gyr mean kinematical age. After removing magnetic systems from the sample, it is found that non-magnetic CVs (134 systems) have a mean kinematical age of 4 ± 1 Gyr. According to 5 ± 1 and 4 ± 1 Gyr kinematical ages implied by 52 ± 8 and 45 ± 7 km s?1 dispersions for non-magnetic systems below and above the period gap, CVs below the period gap are older than systems above the gap, which is a result in agreement with the standard evolution theory of CVs. Age difference between the systems below and above the gap is smaller than that expected from the standard theory, indicating a similarity of the angular momentum loss time scales in systems with low-mass and high-mass secondary stars. Assuming an isotropic distribution, γ velocity dispersions of non-magnetic CVs below and above the period gap are calculated σγ=30±5kms-1 and σγ=26±4kms-1. The small difference of γ velocity dispersions between the systems below and above the gap may imply that magnetic braking does not operate in the detached phase, during which the system evolves from the post-common envelope orbit into contact.  相似文献   
17.
Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes (σπ /π < 0.15) which are neither associated with a photometric tertiary nor with evidence of a visual companion, were selected for re‐calibrating the Period‐Luminosity‐Color (PLC) relation of W UMa stars. Using the Lutz‐Kelker (LK) bias corrected (most probable) parallaxes, periods (0.26 < P < 0.87, P in days), and colors (0.04 < (BV)0 < 1.28) of the 31 selected W UMa, the PLC relation have been revised and re‐calibrated. The difference between the old (revised but not bias corrected) and the new (LK bias corrected) relations are almost negligible in predicting the distances of W UMa stars up to about 100 pc. But, it increases and may become intolerable as distances of stars increase. Additionally, using (JH)0 and (HKs)0 colors from 2MASS (TwoMicron All Sky Survey) data, a PLC relation working with infrared data was derived. It can be used with infrared colors in the range –0.01 < (JH)0 < 0.58, and –0.10 < (HKs)0 < 0.18. Despite of the fact that the 2MASS data refer to single epoch observations which are not guaranteed to be taken at maximum brightness of theWUMa stars, the established relation has been found surprisingly consistent and reliable in predicting LK corrected distances of W UMa stars (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
18.
Lutz‐Kelker bias corrected absolute magnitude calibrations for the detached binary systems with main‐sequence components are presented. The absolute magnitudes of the calibrator stars were derived at intrinsic colours of Johnson‐Cousins and 2MASS (Two Micron All Sky Survey) photometric systems. As for the calibrator stars, 44 detached binaries were selected from the Hipparcos catalogue, which have relative observed parallax errors smaller than 15% (σπ ≤ 0.15). The calibration equations which provide the corrected absolute magnitude for optical and near‐infrared pass bands are valid for wide ranges of colours and absolute magnitudes: –0.18 < (BV)0 < 0.91, –1.6 < MV < 5.5 and –0.15 < (JH)0 < 0.50, –0.02 < (HKs)0 < 0.13, 0 < MJ < 4, respectively. The distances computed using the luminosity‐colours (LCs) relation with optical (BV) and near‐infrared (JHKs) observations were compared to the distances found from various other methods. The results show that new absolute magnitude calibrations of this study can be used as a convenient statistical tool to estimate the true distances of detached binaries out of Hipparcos' distance limit. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
19.
Eker  Zeki 《Solar physics》2003,212(2):277-300
Assuming the clouds as plane parallel structures above the photosphere, center-to-limb contrast variations of various cloud models for solar faculae with approximations such as optically thin or thick, hot or cold, and with or without surface reflections, have been investigated. It has been found that the observed facular contrast data from Frazier (1971) and Taylor et al. (1998) at the 525 nm continuum is best represented by a cloud which is 230 K hotter than the undisturbed photosphere, with an optical depth =0.4283, and with isotropic surface reflections causing 11% of the background photons to be lost before penetrating into the cloud. This model and some other cloud models are shown to provide a fit better than the other physical and non-physical facular models presented previously.  相似文献   
20.
The secular evolution of the orbital angular momentum (OAM), the systemic mass  ( M = M 1+ M 2)  and the orbital period of 114 chromospherically active binaries (CABs) were investigated after determining the kinematical ages of the subsamples which were set according to OAM bins. OAMs, systemic masses and orbital periods were shown to be decreasing by the kinematical ages. The first-order decreasing rates of OAM, systemic mass and orbital period have been determined as     per systemic OAM,     per systemic mass and     per orbital period, respectively, from the kinematical ages. The ratio of d log  J /d log  M = 2.68, which were derived from the kinematics of the present sample, implies that there must be a mechanism which amplifies the angular momentum loss (AML)     times in comparison to isotropic AML of hypothetical isotropic wind from the components. It has been shown that simple isotropic mass loss from the surface of a component or both components would increase the orbital period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号