首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
测绘学   3篇
大气科学   3篇
地球物理   13篇
地质学   62篇
海洋学   9篇
天文学   6篇
自然地理   2篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2015年   3篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   9篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1971年   1篇
排序方式: 共有98条查询结果,搜索用时 68 毫秒
31.
32.
The solubility behavior of K2O, Na2O, Al2O3, and SiO2 in silicate-saturated aqueous fluid and coexisting H2O-saturated silicate melts in the systems K2O-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O has been examined in the 1- to 2-GPa pressure range at 1100°C. Glasses of Na- and K-tetrasilicate compositions with 0, 3, and 6 mol% Al2O3 were used as starting materials. In both systems, the oxides dissolve incongruently in aqueous fluid and silicate melt. When recalculated to an anhydrous basis, the aqueous fluids are enriched in alkalis and depleted in silica and alumina relative to their proportions in the starting materials. The extent of incongruency is more pronounced in the Na2O-Al2O3-SiO2-H2O system than in the K2O-Al2O3-SiO2-H2O system.The partition coefficients of the oxides, Doxidefluid/melt, are linear and positive functions of the oxide concentration in the fluid for each composition. There is a slight dependence of the partition coefficients on bulk composition. No effect of pressure could be discerned. For alkali metals, the fluid/melt partition coefficients range from 0.06 to 0.8. For Al2O3 this range is 0.01 to 0.2, and for SiO2, it is 0.01 to 0.32. For all compositions, DK2Ofluid/melt∼DNa2Ofluid/melt>DSiO2fluid/melt>DAl2O3fluid/melt for the same oxide concentration in the fluid. DK2Ofluid/melt, DNa2Ofluid/melt, and DSiO2fluid/melt correlate negatively with the Al2O3 content of the systems. This correlation is consistent with a solubility model of alkalis that involve associated KOH°, NaOH°, silicate, and aluminate complexes.  相似文献   
33.
Partitioning of Mg and Fe2+ between olivine and mafic melts has been determined experimentally for eight different synthetic compositions in the temperature range between 1335 and 1425°C at 0.1 MPa pressure and at fo2 ∼1 log unit below the quartz-fayalite-magnetite buffer. The partition coefficient [KD = (Fe2+/Mg)ol/(Fe2+/Mg)melt] increases from 0.25 to 0.34 with increasing depolymerization of melt (NBO/T of melt from 0.25-1.2), and then decreases with further depolymerization of melt (NBO/T from 1.2-2.8). These variations are similar to those observed in natural basalt-peridotite systems. In particular, the variation in NBO/T ranges for basaltic-picritic melts (0.4-1.5) is nearly identical to that obtained in the present experiments. Because the present experiments were carried out at constant pressure (0.1 MPa) and in a relatively small temperature range (90°C), the observed variations of Mg and Fe2+ partitioning between olivine and melt must depend primarily on the composition or structure of melt. Such variations of KD may depend on the relative proportions of four-, five-, and six-coordinated Mg2+ and Fe2+ in melt as a function of degree of NBO/T.  相似文献   
34.
Numerical ocean modelling is computationally very demanding. Traditionally, the hydrostatic approximation has been applied to reduce the computational burden. This approximation is valid in large scale studies with coarse grid resolution. With faster computers and gradually smaller grid sizes, we may expect that more studies will be performed with non-hydrostatic ocean models. In recent papers several methods for including non-hydrostatic pressure in σ-coordinate models have been suggested. In this paper the sensitivity of the non-hydrostatic pressure field, the velocity fields, and the density fields to changes in the method for computing non-hydrostatic pressure in σ-coordinate ocean models is addressed.The first test case used involves the propagation and breaking of an internal wave at an incline in a tank. The other test case concerns tidally driven flow over a sill in a stratified fjord. The results from our numerical exercises suggest that the velocity and density fields are very robust to the model choices investigated here. The differences between the model results are of the same order as the uncertainty due to the internal pressure gradient error, and they are smaller than an estimate of the uncertainty due to subgrid scale closure.  相似文献   
35.
E. Mysen 《Journal of Geodesy》2014,88(10):917-926
A realization of a height system covering the south of Norway has been performed, based on least-squares collocation applied to differences between geometric and gravimetric quasigeoid heights, inhomogeneous and isotropic covariance modelling, and without prior information on the error sources of the involved data types. As a result, the derived normal heights were biased by the systematic errors of the GPS-levelling network. The important covariance properties were determined at every location from spatially differenced observations, and made it straightforward to evaluate the uncertainties of the biased height reference. The distribution of predictions followed a Gaussian shape, but extreme realizations were overrepresented.  相似文献   
36.
Solubility and solution mechanisms in silicate melts of oxidized and reduced C-bearing species in the C-O-H system have been determined experimentally at 1.5 GPa and 1400 °C with mass spectrometric, NMR, and Raman spectroscopic methods. The hydrogen fugacity, fH2, was controlled in the range between that of the iron-wüstite-H2O (IW) and the magnetite-hematite-H2O (MH) buffers. The melt polymerization varied between those typical of tholeiitic and andesitic melts.The solubility of oxidized (on the order of 1-2 wt% as C) and reduced carbon (on the order of 0.15-0.35 wt% as C) is positively correlated with the NBO/Si (nonbridging oxygen per silicon) of the melt. At given NBO/Si-value, the solubility of oxidized carbon is 2-4 times greater than under reducing conditions. Oxidized carbon dioxide is dissolved as complexes, whereas the dominant reduced species in melts are CH3-groups forming bonds with Si4+ together with molecular CH4. Formation of complexes results in silicate melt polymerization (decreasing NBO/Si), whereas solution of reduced carbon results in depolymerization of melts (increasing NBO/Si).Redox melting in the Earth’s interior has been explained with the aid of the different solution mechanisms of oxidized and reduced carbon in silicate melts. Further, effects of oxidized and reduced carbon on melt viscosity and on element partitioning between melts and minerals have been evaluated from relationships between melt polymerization and dissolved carbon combined with existing experimental data that link melt properties and melt polymerization. With total carbon contents in the melts on the order of several mol%, mineral/melt element partition coefficients and melt viscosity can change by several tens to several hundred percent with variable redox conditions in the range of the Earth’s deep crust and upper mantle.  相似文献   
37.
Flow in a porous medium can be described by a set of non-linear partial differential equations. The pressure variable satisfies a maximum principle, which guarantees that the solution will have no oscillations. A discretisation of the pressure equation should preserve this monotonicity property. Whether a numerical method is monotone will depend both on the medium and on the grid. We study monotonicity of Multi-point Flux Approximation methods on triangular grids. We derive necessary conditions for monotonicity on uniform grids. Further, we study the robustness of the methods on rough grids, and quantify the violations of the maximum principle. These investigations are done for single phase flow, however, they are supported by two-phase simulations.  相似文献   
38.
39.
In simulation of fluid injection in fractured geothermal reservoirs, the characteristics of the physical processes are severely affected by the local occurence of connected fractures. To resolve these structurally dominated processes, there is a need to develop discretization strategies that also limit computational effort. In this paper, we present an upscaling methodology for geothermal heat transport with fractures represented explicitly in the computational grid. The heat transport is modeled by an advection-conduction equation for the temperature, and solved on a highly irregular coarse grid that preserves the fracture heterogeneity. The upscaling is based on different strategies for the advective term and the conductive term. The coarse scale advective term is constructed from sums of fine scale fluxes, whereas the coarse scale conductive term is constructed based on numerically computed basis functions. The method naturally incorporates the coupling between solution variables in the matrix and in the fractures, respectively, via the discretization. In this way, explicit transfer terms that couple fracture and matrix solution variables are avoided. Numerical results show that the upscaling methodology performs well, in particular for large upscaling ratios, and that it is applicable also to highly complex fracture networks.  相似文献   
40.
The solubility and solution mechanisms of reduced COH volatiles in Na2OSiO2 melts in equilibrium with a (H2 + CH4) fluid at the hydrogen fugacity defined by the iron-wüstite + H2O buffer [fH2(IW)] have been determined as a function of pressure (1-2.5 GPa) and silicate melt polymerization (NBO/Si: nonbridging oxygen per silicon) at 1400 °C. The solubility, calculated as CH4, increases from ∼0.2 wt% to ∼0.5 wt% in the melt NBO/Si-range ∼0.4 to ∼1.0. The solubility is not significantly pressure-dependent, probably because fH2(IW) in the 1-2.5 GPa range does not vary greatly with pressure. Carbon isotope fractionation between methane-saturated melts and (H2 + CH4) fluid varied by ∼14‰ in the NBO/Si-range of these melts.The (C..H) and (O..H) speciation in the quenched melts was determined with Raman and 1H MAS NMR spectroscopy. The dominant (C..H)-bearing complexes are molecular methane, CH4, and a complex or functional group that includes entities with CCH bonding. Minor abundance of complexes that include SiOCH3 bonding is tentatively identified in some melts. There is no spectroscopic evidence for SiC or SiCH3. Raman spectra indicate silicate melt depolymerization (increasing NBO/Si). The [CH4/CCH]melt abundance ratio is positively correlated with NBO/Si, which is interpreted to suggest that the (CCH)-containing structural entity is bonded to the silicate melt network structure via its nonbridging oxygen. The ∼14‰ carbon isotope fractionation change between fluid and melt is because of the speciation changes of carbon in the melt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号