首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
大气科学   6篇
地球物理   8篇
地质学   19篇
海洋学   3篇
天文学   6篇
自然地理   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有43条查询结果,搜索用时 31 毫秒
11.
The phase relationship between climate parameters during terminations gives insight into deglaciation mechanisms. By combining foraminiferal Mg/Ca and alkenone thermometers with planktonic and benthic foraminiferal δ18O, we determined the phase relationship between local sea surface temperature (SST) and global seawater δ18O changes in the Coral Sea in the Southwestern Pacific over the last 360 ka. The onset of the SST warming preceded the seawater δ18O change by several ka for Termination I, II and III. During Termination I, the SST warming started at 20 ka BP, earlier than atmospheric CO2 rise suggesting that the greenhouse effect was not the main trigger of this early warming. Compilation of 14C-dated SST records from the whole Pacific during Termination I reveals that the onset of the warming is generally earlier in the Southern and the tropical Pacific than in the North Pacific. This spatio-temporal warming pattern suggests linkage between the southern ocean and tropical Pacific. The early tropical warming could provide heat and moisture to the northern high latitudes, modifying radiative balance and precipitation over ice sheets at the onset of deglaciation.  相似文献   
12.
13.
At present the most powerful tree-ring based climate reconstructions use high numbers of growth proxy series (ring width and density) to produce spatially smoothed estimates, such as average Northern Hemisphere summer temperatures. These single parameter reconstructions might be supplemented with regional climate reconstructions capable of capturing variability in more than one climate variable without lower replication compromising statistical quality, if multiple tree ring proxies were used. Pinus sylvestris and Pinus uncinata latewood density, width and δ13C series are presented from two sites in the French subalpine zone, east of Briançon. Where two proxies have the same dominant climate control their combination enhances that signal. Where proxies differ in dominant controlling climate variable, combining series allows access to bi-variable calibrations. Using this approach, multi-proxy reconstructions of both temperature and precipitation would better reflect complex synoptic variability in climate on spatially useful scales.  相似文献   
14.
A new oxygen isotope record is reported from a stalagmite collected in the Argentarola Cave located on the Tyrrhenian coast of Italy. As shown from observations and numerical modeling of δ18O in modern precipitation, the recorded δ18O variability for this zone is dominated by the amount of precipitation (so-called ‘amount effect’). The δ18O profile measured in the stalagmite is characterized by a prominent negative excursion (ca. 2-3‰) between 180 and 170 kyr BP. This paleoclimatic feature is interpreted as being due to a relatively wet period which occurred during the penultimate glacial period, more precisely, during Marine Isotope Stage 6.5. This pluvial phase is shown to correspond chronologically to the deposition of the sapropel event 6 (S6). Although this particular sapropel event occurred during a cold phase, the δ18O excursion is similar to those corresponding to other sapropels (S4, S3 and S2). The evidence for humid conditions during S6 in the western Mediterranean basin agrees with previous studies based on deep-sea sediment cores. Taken collectively, the data suggest that during sapropel events dilution of ocean surface waters was not restricted to the output of the river Nile but was rather widespread over the entire Mediterranean Sea due to increased rainfall.  相似文献   
15.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   
16.
17.
Soil physical characteristics can influence terrestrial hydrology and the energy balance and may thus affect land–atmosphere exchanges. However, only few studies have investigated the importance of soil textures for climate. In this study, we examine the impact of soil texture specification in a regional climate model. We perform climate simulations over Europe using soil maps derived from two different sources: the soil map of the world from the Food and Agricultural Organization and the European Soil Database from the European Commission Joint Research Center. These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2 °C in mean 2-m temperature and 20 % in precipitation resulting from changes in the partitioning of energy at the land surface into sensible and latent heat flux. Furthermore, we perform additional simulations where individual soil parameters are perturbed in order to understand their role for summer climate. These simulations highlight the importance of the vertical profile of soil moisture for evapotranspiration. Parameters affecting the latter are hydraulic diffusivity parameters, field capacity and plant wilting point. Our study highlights the importance of soil properties for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture and the resulting differences between maps from different sources, efforts to improve existing databases are needed. In addition, climate models would benefit from tackling unresolved issues in land-surface modeling related to the high spatial variability in soil parameters, both horizontally and vertically, and to limitations of the concept of soil textural class.  相似文献   
18.
19.
A 2.5 × 2.5° gridded summer (April–September) drought reconstruction over the larger Mediterranean land area (32.5°/47.5°N, 10°W/50°E; 152 grid points) is described, based on a network of 165 tree-ring series. The drought index used is the self-calibrated Palmer Drought Severity Index, and the period considered is 1500–2000. The reconstruction technique combines an analogue technique for the estimation of missing tree-ring data with an artificial neural network for optimal non-linear calibration, including a bootstrap error assessment. Tests were carried out on the various sources of error in the reconstructions. Errors related to the temporal variations of the number of proxies were tested by comparing four reconstructions calibrated with four different sized regressor datasets, representing the decrease in the number of available proxies over time. Errors related to the heterogeneous spatial density of predictors were tested using pseudo-proxies, provided by the global climate model ECHO-G. Finally the errors related to the imperfect climate signal recorded by tree-ring series were tested by adding white noise to the pseudo-proxies. Reconstructions pass standard cross-validation tests. Nevertheless tests using pseudo-proxies show that the reconstructions are less good in areas where proxies are rare, but that the average reconstruction curve is robust. Finally, the noise added to proxies, which is by definition a high frequency component, has a major effect on the low frequency signal, but not on the medium frequencies. The comparison of the low frequency trends of our mean reconstruction and the GCM simulation indicates that the detrending method used is able to preserve the long-term variations of reconstructed PDSI. The results also highlight similar multi-decadal PDSI variations in the central and western parts of the Mediterranean basin and less clear low frequency changes in the east. The sixteenth and the first part of the seventeenth centuries are characterized by marked dry episodes in the west similar to those observed in the end of the twentieth century. In contrast, the eighteenth and nineteenth centuries (Little Ice Age) are characterized by dominant wet periods. In the eastern part of the Mediterranean basin the observed strong drought period of the end of the twentieth century seems to be the strongest of the last 500 years.  相似文献   
20.
Latitudinal movements of the Intertropical Convergence Zone (ITCZ), analogous to its present-day seasonal shifts, and El Niño Southern Oscillation (ENSO)-type variability both potentially impacted rainfall changes at the millennial timescale during the last glacial period. In this study we compare tropical Pacific sedimentary records of paleoprecipitation to decipher which climate mechanism was responsible for the past rainfall changes. We find that latitudinal movements of the ITCZ are consistent with the observed rainfall patterns, challenging the ENSO hypothesis for explaining the rapid rainfall changes at low latitudes. The ITCZ-related mechanism appears to reflect large-scale atmospheric rearrangements over the tropical belt, with a pronounced Heinrich-Dansgaard/Oeschger signature. This observation is coherent with the simulated tropical rainfall anomalies induced by a weakening of the Atlantic thermohaline circulation in modeling experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号