首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   5篇
  国内免费   3篇
测绘学   2篇
大气科学   13篇
地球物理   15篇
地质学   71篇
海洋学   33篇
天文学   28篇
自然地理   5篇
  2019年   4篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   9篇
  2010年   10篇
  2009年   12篇
  2008年   5篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1993年   3篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   3篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1930年   1篇
排序方式: 共有167条查询结果,搜索用时 31 毫秒
121.
122.
Holocene cemented beach deposits in Belize   总被引:1,自引:0,他引:1  
Two types of cemented beach deposits occur on reef islands off the coast of Belize. These are (1) intertidal beachrock that is dominantly cemented by marine aragonite and high-magnesium-calcite cements, and (2) supratidal cayrock that is cemented mainly by vadose low-magnesium-calcite cements. Besides differences in position relative to present sea level and resulting early diagenesic features, beachrock and cayrock can be distinguished on the basis of differences in composition, texture, geographical position, and age. Whereas the composition of beachrock is similar to that of the adjacent marginal reef sediments, cayrock is enriched in benthic foraminifera. Intertidal beachrock is moderately to well sorted and well cemented, while supratidal cayrock is very well sorted, poorly cemented and friable. Beachrock occurs preferentially on windward beaches of sand-shingle Gays on the middle and southern barrier reefs and on the isolated platforms Glovers and Lighthouse Reefs. Cayrock only occurs on larger mangrove-sand Gays of the isolated platforms Turneffe Islands, Lighthouse Reef, and the northern barrier reef. 14C-dating of ten whole-rock and mollusk shell samples produced calibrated dates between AD 345 and AD 1435 for beachrock and between BC 1085 and AD 1190 for cayrock.

The large-scale distribution of beachrock in Belize supports the contention that physical processes such as water agitation rather than biological processes control beachrock formation and distribution. Only on windward sides of cays that are close to the reef crest, where large amounts of seawater flush the beaches, considerable amounts of cements can be precipitated to produce beachrock. Cayrock forms due to cementation in the vadose zone and is only preserved on larger, stable mangrove-sand cays.  相似文献   

123.
It is a widely held concept that tropical coral reefs in shallower water with branched acroporid corals should accrete faster than those in deeper water dominated by massive corals. Results from a study of Holocene development of the largest Atlantic reef system, including paleo-waterdepth data, challenge these concepts. In Belize barrier and atoll reefs, reef accretion-rates range from 0.46 to 7.50 m/kyr, and average 3.03 m/kyr, as measured along 33 dated reef sections. Interestingly, accretion-rates increase with increasing paleo-waterdepth, and sections dominated by massive corals accumulated even slightly faster than those with branched acroporids. Published data from some other reef locations reveal no significant trends when plotting reef accretion-rate versus paleo-waterdepth, also indicating that the above-mentioned concepts should be questioned. Massive corals apparently are more resistant and accrete in lower disturbance conditions in slightly deeper water (5–10 m) and higher accomodation (space available for sediment deposition) as compared to shallow water (0–5 m) branched acroporids, which repeatedly get broken and leveled out during tropical cyclones.  相似文献   
124.
Combined UV, optical and, in part, IR continuum distributions of the UX UMa-systems CPD-48°1577, V3885 Sgr, RW Sex and of the recently discovered cataclysmic system PHL 227 were determined from multi-wavelength spectroscopic and photometric data to search for general characteristics of these systems. The observed variations of the UV to IR spectroal indices are qualitatively very similar for all systems, whereas the absolute values show significant differences in the far and near UV ranges. The wavelength dependence of the optical and IR spectral indices as well as the variations of the Balmer line profiles lie within the range of model spectra of optically thick and stationary accretion disks with stellar atmosphere characteristics. The different behavior of the far UV spectral indices can be explained by the excess radiation from an extended and optically thick boundary layer, which depends mainly on the orbital inclination.Based on observations collected at the European Southern Observatory, La Silla, Chile, and with the International Ultraviolet Explorer Satellite at the Villafanca ground station.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   
125.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   
126.
The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium‐series dates obtained and subsequently analysed. Sea‐level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age–depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 ± 50 yr bp ; accretion rates average 5·65 m kyr?1. The barrier reef consists of >30 m thick Holocene coralgal and microbial successions. Holocene barrier‐reef growth began 10 030 ± 50 yr bp and accretion rates average 6·15 m kyr?1. The underlying Pleistocene reef formed 116 900 ± 1100 yr bp , i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0·05 to 0·14 m kyr?1. In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sea‐level changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier‐reef systems in Tahiti and Mayotte exhibit more differences than similarities.  相似文献   
127.
128.
Bottom water formation changes the characteristics of water masses entering the southern part of the Weddell Sea through atmosphere-ice-ocean interaction in which both sea and shelf ice play an important role. Modified water, in particular Weddell Sea Bottom Water, recirculates in the west. By comparing the in- and outflowing water masses we have estimated transformation rates on the basis of a data set obtained during the Winter Weddell Gyre Study from September to October 1989. This consisted of a salinity-temperature-depth (CTD) section carried out by R/V “Polarstern” from the northern tip of the Antarctic Peninsula to Kapp Norvegia and data from three current meter moorings maintained from 1989 to 1990 in the eastern boundary current off Kapp Norvegia. Because of the lack of sufficient direct current measurements in the interior and the western boundary current, it was necessary to derive mass transports on the basis of available data combined with physical and geometrical arguments. At the mooring site barotropic currents were measured. They were extrapolated to the interior under the assumption that wind-driven, baroclinic and barotropic current fields are of similar shape. The location of the gyre centre was determined from drifting buoy tracks and geopoten-tial anomaly. A linear current profile from the eastern boundary current to the centre of the gyre was assumed, and the western outflow was determined according to mass conservation. Different assumptions on the transition from the boundary current to the interior and the location of the centre result in a wide range of transports with most likely values between 20 and 56 Sv. The total mass transport was split into individual water masses. Differences between inflow and outflow result in a transformation rate of 3–4 Sv from Winter and Warm Deep Water to Antarctic and Weddell Sea Bottom Water. The net heat and salt transport across the transect implies heat fluxes from the ocean to the atmosphere of 3–10 W m−2 and ice formation rates of 0.2–0.35 m year−1.  相似文献   
129.
We present observations of strong, episodic, bottom-intensified currents from two current meter moorings, each of a year's duration, placed in the central Greenland Sea at 75°N, 8°W, in a water depth of circa 3340 m. The events, recorded by the current meters placed some 50 m above the sea floor, occur about 4 times a year and last about a week. They show currents of up to 43 cm/s, turning in direction, occasionally modulated by a signal of the frequency of the Coriolis parameter or the semi-diurnal tide. The temperature record at the current meter however remains constant to 0.01°C. The current direction measured at overlying meters correlates well with that of the deepest meter – the current speed does not. Independent, geological data also show evidence of strong bottom flows in the area.We discuss possible mechanisms for these `benthic storms', including the hypothesis of a sediment driven plume descending from the East Greenland continental slope. These high energy events have implications for sedimentation, shelf-basin exchange and boundary mixing processes. Normal mode theory is used to justify the dynamical response of the system to such a bottom-trapped impulse.  相似文献   
130.
In this study we assessed changes in the contribution of terrigenous organic matter (OM) to the Gulf of Mexico over the course of the last deglaciation (the last 25 kyr). To this end, we combined optical kerogen analyses with bulk sedimentary, biomarker, and compound-specific carbon isotope analyses. Samples were obtained from core MD02-2550 from Orca Basin (2249 m water depth at 26°56.77N, 91°20.74W) with temporal resolution ranging from multi-decadal to millennial-scale, depending on the proxy. All proxies confirmed larger terrigenous input during glacial times compared to the Holocene. In addition, the kerogen analyses suggest that much of the glacial OM is reworked (at least 50% of spores and pollen grains and 40% of dinoflagellate cysts). The Holocene sediments, in contrast, contain mainly marine OM, which is exceptionally well preserved. During the deglaciation, terrigenous input was generally high due to large meltwater fluxes, whereby discrepancies between different proxies call for additional influences, such as the change in distance to the river mouth, local productivity changes, and hydrodynamic particle sorting. It is possible that kerogen particles and the terrigenous biomarkers studied here represent distinct pools of land-derived OM with inputs varying independently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号