首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
大气科学   1篇
地球物理   6篇
地质学   10篇
海洋学   6篇
天文学   36篇
自然地理   3篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2011年   1篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   12篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1998年   1篇
  1989年   2篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有62条查询结果,搜索用时 4 毫秒
61.
The influence of riparian woodland on stream temperature, micro‐climate and energy exchange was investigated over seven calendar years. Continuous data were collected from two reaches of the Girnock Burn (a tributary of the Aberdeenshire Dee, Scotland) with contrasting land use characteristics: (1) semi‐natural riparian forest and (2) open moorland. In the moorland reach, wind speed and energy fluxes (especially net radiation, latent heat and sensible heat) varied considerably between years because of variable riparian micro‐climate coupled strongly to prevailing meteorological conditions. In the forested reach, riparian vegetation sheltered the stream from meteorological conditions that produced a moderated micro‐climate and thus energy exchange conditions, which were relatively stable between years. Net energy gains (losses) in spring and summer (autumn and winter) were typically greater in the moorland than the forest. However, when particularly high latent heat loss or low net radiation gain occurred in the moorland, net energy gain (loss) was less than that in the forest during the spring and summer (autumn and winter) months. Spring and summer water temperature was typically cooler in the forest and characterised by less inter‐annual variability due to reduced, more inter‐annually stable energy gain in the forested reach. The effect of riparian vegetation on autumn and winter water temperature dynamics was less clear because of the confounding effects of reach‐scale inflows of thermally stable groundwater in the moorland reach, which strongly influenced the local heat budget. These findings provide new insights as to the hydrometeorological conditions under which semi‐natural riparian forest may be effective in mitigating river thermal variability, notably peaks, under present and future climates. © 2014 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
62.
In order to understand metal speciation in a polluted river (Este River, Northern Portugal) filtrate, freeze dried particles and organics desorbed from surfaces were titrated with Cd(II) and Zn(II), followed by differential pulse anodic stripping voltammetry (DPASV). The obtained results are compared with those previously published for Pb(II) and Cu(II). Due to the heterogeneity of the system, a continuous and a discrete ligand model were used to interpret the titration data. Two types of ligands could be detected and quantified by the discrete ligand model: small molecules with high affinities for cations such as Cd(II), Cu(I), and Zn(II) and macromolecules with higher affinities for Pb(II) and Cu(II). Small ligands were strongly adsorbed onto the particles, as inferred from the desorption of Zn(II) during titration with Pb(II) and Cd(II). The total concentrations of the different ligands and the complex formation constants with the different metals are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号