首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38845篇
  免费   627篇
  国内免费   240篇
测绘学   754篇
大气科学   2580篇
地球物理   7630篇
地质学   14062篇
海洋学   3545篇
天文学   8721篇
综合类   87篇
自然地理   2333篇
  2022年   257篇
  2021年   440篇
  2020年   499篇
  2019年   576篇
  2018年   1011篇
  2017年   1013篇
  2016年   1078篇
  2015年   582篇
  2014年   1034篇
  2013年   1850篇
  2012年   1191篇
  2011年   1629篇
  2010年   1441篇
  2009年   1796篇
  2008年   1629篇
  2007年   1688篇
  2006年   1556篇
  2005年   1058篇
  2004年   1074篇
  2003年   1112篇
  2002年   996篇
  2001年   868篇
  2000年   797篇
  1999年   723篇
  1998年   715篇
  1997年   723篇
  1996年   588篇
  1995年   572篇
  1994年   501篇
  1993年   453篇
  1992年   409篇
  1991年   424篇
  1990年   437篇
  1989年   391篇
  1988年   369篇
  1987年   400篇
  1986年   415篇
  1985年   508篇
  1984年   546篇
  1983年   542篇
  1982年   496篇
  1981年   454篇
  1980年   429篇
  1979年   408篇
  1978年   375篇
  1977年   384篇
  1976年   344篇
  1975年   353篇
  1974年   340篇
  1973年   370篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
221.
222.
The Gravity Recovery and Climate Experiment (GRACE) products provide valuable information about total water storage variations over the whole globe. Since GRACE detects mass variations integrated over vertical columns, it is desirable to separate its total water storage anomalies into their original sources. Among the statistical approaches, the principal component analysis (PCA) method and its extensions have been frequently proposed to decompose the GRACE products into space and time components. However, these methods only search for decorrelated components that on the one hand are not always interpretable and on the other hand often contain a superposition of independent source signals. In contrast, independent component analysis (ICA) represents a technique that separates components based on assumed statistical independence using higher-order statistical information. If one assumes that independent physical processes generate statistically independent signal components added up in the GRACE observations, separating them by ICA is a reliable strategy to identify these processes. In this paper, the performance of the conventional PCA, its rotated extension and ICA are investigated when applied to the GRACE-derived total water storage variations. These analyses have been tested on both a synthetic example and on the real GRACE level-2 monthly solutions derived from GeoForschungsZentrum Potsdam (GFZ RL04) and Bonn University (ITG2010). Within the synthetic example, we can show how imposing statistical independence in the framework of ICA improves the extraction of the ‘original’ signals from a GRACE-type super-position. We are therefore confident that also for the real case the ICA algorithm, without making prior assumptions about the long-term behaviour or on the frequencies contained in the signal, improves over the performance of PCA and its rotated extension in the separation of periodical and long-term components.  相似文献   
223.
Testing the accuracy of 3D modelling algorithms used for geological applications is extremely difficult as model results cannot be easily validated. This paper presents a new approach to evaluate the effectiveness of common interpolation algorithms used in 3D subsurface modelling, utilizing four synthetic grids to represent subsurface environments of varying geological complexity. The four grids are modelled with Inverse Distance Weighting and Ordinary Kriging, using data extracted from the synthetic grids in different spatial distribution patterns (regular, random, clustered and sparse), and with different numbers of data points (100, 256, 676 and 1,600). Utilizing synthetic grids for this evaluation allows quantitative statistical assessment of the accuracy of both interpolation algorithms in a variety of sampling conditions. Data distribution proved to be an important factor; as in many geological situations, relatively small numbers of randomly distributed data points can generate more accurate 3D models than larger amounts of clustered data. This study provides insight for optimizing the quantity and distribution of data required to accurately and cost-effectively interpolate subsurface units of varying complexity.  相似文献   
224.
以归一化雪被指数法为基础根据南极的环境特点提出了MODIS影像的0.86m与1.24m的新波段组合方法分别实现了晴空与薄云下的海冰提取大幅度地提高了南极海冰监测的效率与分辨率 结合AMSR-E微波数据进行了海冰变化研究得到2002 2010年的全南极海冰范围与净冰面积都在2月份达到最小值均值分别为3.17×106 km2与2.42×106 km2 都在9月份达到最大值均值分别为18.40×106 km2与16.60×106 km2 而全南极海冰的年际变化可分为三个阶段从2002 2004年海冰基本持平2005 2007年海冰减少2008 2010年海冰重新增长这与南极海冰20a长周期的推断相符合但9年间的全南极海冰无明显的趋势性变化  相似文献   
225.
The proper identification and removal of outliers in the combination of rates of vertical displacements derived from GPS, tide gauges/satellite altimetry, and GRACE observations is presented. Outlier detection is a necessary pre-screening procedure in order to ensure reliable estimates of stochastic properties of the observations in the combined least-squares adjustment (via rescaling of covariance matrices) and to ensure that the final vertical motion model is not corrupted and/or distorted by erroneous data. Results from this study indicate that typical data snooping methods are inadequate in dealing with these heterogeneous data sets and their stochastic properties. Using simulated vertical displacement rates, it is demonstrated that a large variety of outliers (random scattered and adjacent, as well as jointly influential) can be dealt with if an iterative re-weighting least-squares adjustment is combined with a robust median estimator. Moreover, robust estimators are efficient in areas weakly constrained by the data, where even high quality observations may appear to be erroneous if their estimates are largely influenced by outliers. Four combined models for the vertical motion in the region of the Great Lakes are presented. The computed vertical displacements vary between  − 2 mm/year (subsidence) along the southern shores and 3 mm/year (uplift) along the northern shores. The derived models provide reliable empirical constraints and error bounds for postglacial rebound models in the region.  相似文献   
226.
Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the observed data. However, the assumption that the spatial dependence is constant throughout the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage for dealing with non-stationarity in geodetic data. We then compared stationary and non- stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC.  相似文献   
227.
The topographic bias is defined as the error/bias committed by continuing the external gravity field inside the topographic masses by a harmonic function. We study the topographic bias given by a digital terrain model defined by a spherical template, and we show that the topographic bias is given only by the potential of an inner-zone cap, and it equals the bias of the Bouguer shell, independent of the size of the cap. Then we study the effect on the real Earth by decomposing its topography into a template, and we show also in this case that the topographic bias is that of the Bouguer shell, independent of the shape of the terrain. Finally, we show that the topographic potential of the terrain at the geoid can be determined to any precision by a Taylor expansion outside the Earth’s surface. The last statement is demonstrated by a Taylor expansion to fourth order.  相似文献   
228.
229.
Canopy water content (CWC) is important for mapping and monitoring the condition of the terrestrial ecosystem. Spectral information related to the water absorption features at 970 nm and 1200 nm offers possibilities for deriving information on CWC. In this study, we compare the use of derivative spectra, spectral indices and continuum removal techniques for these regions. Hyperspectral reflectance data representing a range of canopies were simulated using the combined PROSPECT + SAILH model. Best results in estimating CWC were obtained by using spectral derivatives at the slopes of the 970 nm and 1200 nm water absorption features. Real data from two different test sites were analysed. Spectral information at both test sites was obtained with an ASD FieldSpec spectrometer, whereas at the second site HyMap airborne imaging spectrometer data were also acquired. Best results were obtained for the derivative spectra. In order to avoid the potential influence of atmospheric water vapour absorption bands the derivative of the reflectance on the right slope of the canopy water absorption feature at 970 nm can best be used for estimating CWC.  相似文献   
230.
Flexible and cost-effective tools for rapid image acquisition and natural resource mapping are needed by land managers. This paper describes the hardware and software architecture of a low-cost system that can be deployed on a light aircraft for rapid data acquisition. The Hyperspectral and Multispectral Cameras for Airborne Mapping (HAMCAM) was designed and developed in the Geospatial Laboratory for Environmental Dynamics at the University of Idaho as a student-learning tool, and to enhance the existing curriculum currently offered. The system integrates a hyperspectral sensor with four multispectral cameras, an Inertial Navigation System (INS), a Wide Area Augmentation System (WAAS)-capable Global Positioning System (GPS), a data acquisition computer, and custom software for running the sensors in a variety of different modes. The outputs include very high resolution imagery obtained in four adjustable visible and near-infrared bands from the multispectral imager. The hyperspectral sensor acquires 240 spectral bands along 2.7 nm intervals within the 445–900 nm range. The INS provides aircraft pitch, roll and yaw information for rapid geo-registration of the imagery. This paper will discuss the challenges associated with the development of the system and the integration of components and software for implementation of this system for natural resource management applications. In addition, sample imagery acquired by the sensor will be presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号