Application of linear baroclinic instability theory to the observed distributions of velocity, stratification, and potential vorticity in the Gulf Stream near 74° W is successful in predicting the time and length scales of the most rapidly growing disturbances. A continuously-stratified, one-dimensional model with realistic bottom slope predicts propagation speeds of 10–50 cm s−1 associated with two regimes of rapid temporal growth centered at periods of 28 days and 5–7 days. This prediction is consistent with observations of the propagation and growth of Gulf Stream meanders derived from inverted echo sounder measurements in this region. The instability model also predicts that for realistic bottom slopes the baroclinic energy transfer should be weakly negative (eddy-to-mean) in deep water, but for low-frequency waves should change to significant positive (mean-to-eddy) transfer above depths of 1500 m, consistent with observations. 相似文献
Forward modeling of zero-offset data is performed in the frequency-space domain using a one-way extrapolation equation. The use of the frequency domain offers several advantages over conventional time domain methods. The greatest advantage of the frequency domain is that all time derivatives are evaluated exactly by a simple multiplication. Synthetic zero-offset sections are computed with a high degree of accuracy for arbitrary velocity and reflectivity structures. Examples are shown for realistic complicated models and compared with results from physical modeling. 相似文献
A three-dimensional Lagrangian tropospheric chemistry modelis used toinvestigate the impact of human activities on the tropospheric distributionofozone and hydroxyl radicals. The model describes the behaviour of 50 speciesincluding methane, carbon monoxide, oxides of nitrogen, sulphur dioxide andnineorganic compounds emitted from human activities and a range of other sources.Thechemical mechanism involves about 100 chemical reactions of which 16 arephotochemical reactions whose diurnal dependence is treated in full. The modelutilises a five minute chemistry time step and a three hour advection timestepfor the 50,000 air parcels. Meteorological data for the winds, temperatures,clouds and so on are taken from the UK Meteorological Office global model for1994 onwards. The impacts of a 50% reduction in European NOXemissions onglobal ozone concentrations are assessed. Surface ozoneconcentrations decrease in summertime and rise in wintertime, but to differentextents. 相似文献
The perspective 4 point (P4P) problem - also called the three-dimensional resection problem - is solved by means of a new algorithm: At first the unknown Cartesian coordinates of the perspective center are computed by means of M?bius barycentric coordinates. Secondly these coordinates are represented in terms of observables, namely space angles in the five-dimensional simplex
generated by the unknown point and the four known points. Substitution of M?bius barycentric coordinates leads to the unknown Cartesian coordinates (2.8)–(2.10) of Box 2.2. The unknown distances within the five-dimensional simplex are determined by solving the Grunert equations, namely by forward reduction to one algebraic equation (3.8) of order four and backward linear substitution. Tables 1.–4.
contain a numerical example. Finally we give a reference to the solution of the 3 point (P3P) problem, the two-dimensional resection problem, namely to the Ansermet barycentric coordinates initiated by C.F. Gau? (1842), A. Schreiber (1908) and A.␣Ansermet (1910).
Received: 05 March 1996; Accepted: 15 October 1996 相似文献
The Lockne impact structure in Jämtland (63°00'20"N, 14°49'30"E) formed in the Middle Ordovician at approximately 455 Ma. The structure is a concentric crater with a total diameter of 13.5 km. The impact took place in a marine environment. Seawater played an important role in the cratering process and in crater morphology and the amount of melt remaining in the structure. Seawater rushed back into the crater in a resurge, eroding and redepositing the ejecta among the resurge deposit. Seawater furthermore facilitated the hydrothermal system, which was driven by the residual heat in the structure. The Lockne structure hosts shocked quartz and an iridium anomaly. The rim wall round the crater collapsed in the modification stage of the crater and was annihilated by the resurge. The fractured basement and the impact breccia were initially rich in open cavities. These became partly filled with dominantly calcite. The filling contributed to a low-density contrast, generating a negative gravity anomaly of 22 gu. The gravity model indicates a central uplift and a NW-directed tilt of the structure. This tilt is also seen in the magnetic models. The apparent absence of any impact melt is probably real and related to the environment of impact. 相似文献
Izvestiya, Atmospheric and Oceanic Physics - Bioparticles constitute a significant fraction of atmospheric aerosol. Their size range varies from nanometers (macromolecules) to hundreds of... 相似文献
In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献