首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106546篇
  免费   2043篇
  国内免费   1358篇
测绘学   2716篇
大气科学   7783篇
地球物理   20828篇
地质学   40921篇
海洋学   8998篇
天文学   22069篇
综合类   493篇
自然地理   6139篇
  2022年   588篇
  2021年   973篇
  2020年   1061篇
  2019年   1163篇
  2018年   4341篇
  2017年   4079篇
  2016年   3624篇
  2015年   1560篇
  2014年   2440篇
  2013年   4588篇
  2012年   3712篇
  2011年   5894篇
  2010年   5172篇
  2009年   6148篇
  2008年   5184篇
  2007年   5715篇
  2006年   3756篇
  2005年   2998篇
  2004年   2858篇
  2003年   2783篇
  2002年   2558篇
  2001年   2088篇
  2000年   2016篇
  1999年   1644篇
  1998年   1658篇
  1997年   1691篇
  1996年   1428篇
  1995年   1415篇
  1994年   1265篇
  1993年   1095篇
  1992年   1084篇
  1991年   1028篇
  1990年   1123篇
  1989年   988篇
  1988年   938篇
  1987年   1058篇
  1986年   975篇
  1985年   1209篇
  1984年   1330篇
  1983年   1289篇
  1982年   1212篇
  1981年   1095篇
  1980年   1112篇
  1979年   960篇
  1978年   909篇
  1977年   929篇
  1976年   832篇
  1975年   812篇
  1974年   814篇
  1973年   859篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Abstract Two types of texturally and compositionally similar breccias that consist largely of fragmental debris from meteorite impacts occur at the Apollo 16 lunar site: Feldspathic fragmental breccias (FFBs) and ancient regolith breccias (ARBs). Both types of breccia are composed of a suite of mostly feldspathic components derived from the early crust of the Moon and mafic impact-melt breccias produced during the time of basin formation. The ARBs also contain components, such as agglutinates and glass spherules, indicating that the material of which they are composed occurred at the surface of the Moon as fine-grained regolith prior to lithification of the breccias. These components are absent from the FFBs, suggesting that the FFBs might be the protolith of the ARBs. However, several compositional differences exist between the two types of breccia, making any simple genetic relationship implausible. First, clasts of mafic impact-melt breccia occurring in the FFBs are of a different composition than those in the ARBs. Also the feldspathic “prebasin” components of the FFBs have a lower average Mg/Fe ratio than the corresponding components of the ARBs; the average composition of the plagioclase in the FFBs is more sodic than that of the ARBs; and there are differences in relative abundances of rare earth elements. The two breccia types also have different provenances: the FFBs occur primarily in ejecta from North Ray crater and presumably derive from the Descartes Formation, while the ARBs are restricted to the Cayley plains. Together these observations suggest that although some type of fragmental breccia may have been a precursor to the ARBs, the FFBs of North Ray crater are not a significant component of the ARBs and, by inference, the Cayley plains. The average compositions of the prebasin components of the two types of fragmental breccia are generally similar to the composition of the feldspathic lunar meteorites. With 30–31% Al2O3, however, they are slightly richer in plagioclase than the most feldspathic lunar meteorites (~29% Al2O3), implying that the crust of the early central nearside of the Moon contained a higher abundance of highly feldspathic anorthosite than typical lunar highlands, as inferred from the lunar meteorites. The ancient regolith breccias, as well as the current surface regolith of the Cayley plains, are more mafic than (1) prebasin regoliths in the Central Highlands and (2) regions of highlands presently distant from nearside basins because they contain a high abundance (~30%) of mafic impact-melt breccias produced during the time of basin formation that is absent from other regoliths.  相似文献   
32.
Summary. Four box cores collected from the Ontong—Java plateau during the Eurydice expedition have been used to make relative geomagnetic palaeo-intensity measurements. Rock magnetic measurements on the sediments show that they are characterized by a uniform magnetic mineralogy, and that they are suitable for relative intensity estimates. These are obtained by normalizing the NRM by an ARM imparted in a low DC bias field. the palaeoceanographic event known as the preservation spike is used to establish a crude time-scale for the record so that it may be compared with other data from the same region, and also with global palaeointensity estimates. the marine sediment data are quite similar to Australian intensity data from lake sediments and archaeomagnetic sources, but as might be expected exhibit some obvious differences from the global record.  相似文献   
33.
The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, uses its large X-ray beam line facility PANTER for testing X-ray astronomical instrumentation. A number of telescopes, gratings, filters, and detectors, e.g. for astronomical satellite missions like Exosat, ROSAT, Chandra (LETG), BeppoSAX, SOHO (CDS), XMM-Newton, ABRIXAS, Swift (XRT), have been successfully calibrated in the soft X-ray energy range (< 15keV). Moreover, measurements with mirror test samples for new missions like ROSITA and XEUS have been carried out at PANTER. Here we report on an extension of the energy range, enabling calibrations of hard X-ray optics over the energy range 15–50 keV. Several future X-ray astronomy missions (e.g., Simbol-X, Constellation-X, XEUS) have been proposed, which make use of hard X-ray optics based on multilayer coatings. Such optics are currently being developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA. These optics have been tested at the PANTER facility with a broad energy band beam (up to 50 keV) using the XMM-Newton EPIC-pn flight spare CCD camera with its good intrinsic energy resolution, and also with monochromatic X-rays between C-K (0.277 keV) and Cu-Kα (8.04 keV). PACS: 95.55.Ka, 95.55.Aq, 41 50.+h, 07.85.Fv  相似文献   
34.
A remarkable number of pulsar wind nebulae (PWN) are coincident with EGRET γ-ray sources. X-ray and radio imaging studies of unidentified EGRET sources have resulted in the discovery of at least six new pulsar wind nebulae (PWN). Stationary PWN (SPWN) appear to be associated with steady EGRET sources with hard spectra, typical for γ-ray pulsars. Their toroidal morphologies can help determine the geometry of the pulsar which is useful for constraining models of pulsed γ-ray emission. Rapidly moving PWN (RPWN) with more cometary morphologies seem to be associated with variable EGRET sources in regions where the ambient medium is dense compared to what is typical for the ISM.  相似文献   
35.
36.
We report the discovery of five massive Wolf–Rayet (WR) stars resulting from a programme of follow-up spectroscopy of candidate emission-line stars in the Anglo-Australian Observatory United Kingdom Schmidt Telescope (AAO/UKST) Southern Galactic Plane Hα survey. The 6195–6775 Å spectra of the stars are presented and discussed. A WC9 class is assigned to all five stars through comparison of their spectra with those of known late-type WC stars, bringing the known total number of Galactic WC9 stars to 44. Whilst three of the five WC9 stars exhibit near-infrared (NIR) excesses characteristic of hot dust emission (as seen in the great majority of known WC9 stars), we find that two of the stars show no discernible evidence of such excesses. This increases the number of known WC9 stars without NIR excesses to seven. Reddenings and distances for all five stars are estimated.  相似文献   
37.
38.
The structure, functioning and hydrodynamic properties of aquifers can be determined from an analysis of the spatial variability of baseflow in the streams with which they are associated. Such analyses are based on simple low‐cost measurements. Through interpreting the hydrological profiles (Q = f(A)) it is possible to locate the aquifer(s) linked to the stream network and to determine the type of interrelated flow, i.e. whether the stream drains or feeds the aquifer. Using an analytical solution developed for situations with a positive linear relationship, i.e. where the baseflow increases linearly with increasing catchment size, it is also possible to estimate the permeability of the aquifer(s) concerned at catchment scale. Applied to the hard‐rock aquifers of the Oman ophiolite, this method shows that the ‘gabbro’ aquifer is more permeable than the ‘peridotite’ aquifer. As a consequence the streams drain the peridotites and ‘leak’ into the gabbro. The hydrological profiles within the peridotite are linear and positive, and indicate homogeneity in the hydrodynamic properties of these formations at the kilometre scale. The permeability of the peridotite is estimated at 5 · 10?7 to 5 · 10?8 m/s. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
39.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   
40.
The main properties of the first- and second-order moments of polarized hydrogen lines, forming in the presence of stationary electric and magnetic fields, are reviewed. The analytical results presented here apply directly to the case of optically-thin emission lines in the LTE regime. Some applications of such results to electric- and magnetic-field diagnostics in (solar) plasmas are then briefly considered.On leave from the Dipartimento di Astronomia e Scienza dello Spazio, Università di Firenze, Largo E. Fermi 5, I-50125 Firenze, Italy  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号