首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   8篇
  国内免费   7篇
测绘学   6篇
大气科学   12篇
地球物理   106篇
地质学   109篇
海洋学   29篇
天文学   57篇
综合类   3篇
自然地理   39篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   5篇
  2014年   11篇
  2013年   12篇
  2012年   9篇
  2011年   12篇
  2010年   14篇
  2009年   13篇
  2008年   11篇
  2007年   20篇
  2006年   11篇
  2005年   20篇
  2004年   7篇
  2003年   12篇
  2002年   13篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   12篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1976年   6篇
  1975年   2篇
  1973年   5篇
  1968年   3篇
  1900年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
41.
Don Hallett 《Geology Today》2002,18(5):182-185
Just a few kilometres south of Cracow, in southern Poland, the scenery changes abruptly from the fluvial plain of the Vistula river, mantled by tills and loess deposits of the Pleistocene glaciation, to a boldly undulating topography representing the outermost thrust sheet of the Carpathian mountains. These northern foothills of the Carpathians are known in Poland as the Beskid Mountains. The Carpathian thrust front can be traced from Upper Silesia through Cracow and Przemysl in southern Poland as far as the Ukraine and Romania. At several places along the thrust front, salt deposits have been found, which have been mined over many centuries. One of the best known mines is located at Wieliczka, 15 km south-east of Cracow. The mine is a popular tourist location, but it also illustrates some spectacular geological features.  相似文献   
42.
Rock physics analysis plays a vital role in time‐lapse seismic interpretation because it provides the link between changes in rock and fluid properties and the resulting seismic data response. In this case study of the Schiehallion Field, we discuss a number of issues that commonly arise in rock physics analyses for time‐lapse studies. We show that:
  • 1 Logarithmic fits of dry bulk (Kdry) and shear (Gdry) moduli vs. effective pressure (Peff) are superior to polynomial fits.
  • 2 2D surface fits of Kdry and Gdry over porosity (φ) and effective pressure using all the core data simultaneously are more useful and accurate than separate 1D fits over φ and Peff for each individual core.
  • 3 One average set (facies) of Kdry(φ, Peff) and Gdry(φ, Peff) can be chosen to represent adequately the entire Schiehallion reservoir.
  • 4 Saturated velocities and densities modelled by fluid substitution of Kdry(φ, Peff), Gdry(φ, Peff) and the dry bulk density ρdry(φ) compare favourably with well‐log velocities and densities.
  • 5 P‐ and S‐wave impedance values resulting from fluid substitution of Kdry(φ, Peff), Gdry(φ, Peff) and ρdry(φ) show that the largest impedance changes occur for high porosities and low effective pressures.
  • 6 Uncertainties in Kdry(φ, Peff) and Gdry(φ, Peff) derived for individual cores can be used to generate error surfaces for these moduli that represent bounds for quantifying uncertainties in seismic modelling or pressure–saturation inversion.
  相似文献   
43.
44.
45.
A closed form slug test theory for high permeability aquifers   总被引:2,自引:0,他引:2  
We incorporate a linear estimate of casing friction into the analytical slug test theory of Springer and Gelhar (1991) for high permeability aquifers. The modified theory elucidates the influence of inertia and casing friction on consistent, closed form equations for the free surface, pressure, and velocity fluctuations for overdamped and underdamped conditions. A consistent, but small, correction for kinetic energy is included as well. A characteristic velocity linearizes the turbulent casing shear stress so that an analytical solution for attenuated, phase shifted pressure fluctuations fits a single parameter (damping frequency) to transducer data from any depth in the casing. Underdamped slug tests of 0.3, 0.6, and 1 m amplitudes at five transducer depths in a 5.1 cm diameter PVC well 21 m deep in the Plymouth-Carver Aquifer yield a consistent hydraulic conductivity of 1.5 x 10(-3) m/s. The Springer and Gelhar (1991) model underestimates the hydraulic conductivity for these tests by as much as 25% by improperly ascribing smooth turbulent casing friction to the aquifer. The match point normalization of Butler (1998) agrees with our fitted hydraulic conductivity, however, when friction is included in the damping frequency. Zurbuchen et al. (2002) use a numerical model to establish a similar sensitivity of hydraulic conductivity to nonlinear casing friction.  相似文献   
46.
47.
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.  相似文献   
48.
The observed density of Venus is about 2% smaller than would be expected if Venus were a twin planet of the Earth, possessing an identical internal composition and structure. In principle, this could be explained by a process of physical segregation of metal particles from silicate particles in the solar nebula prior to accretion, so that Venus accreted from relatively metal-depleted material. However, this model encounters severe difficulties in explaining the nature of the physical segregation process and also the detailed chemical composition of the Earth's mantle. Two alternative hypotheses are examined, both of which attempt to explain the density difference in terms of chemical fractionation processes. Both of these hypotheses assume that the relative abundances of the major elements Fe, Si, Mg, Al, and Ca are similar in both planets. According to the first hypothesis, a larger proportion of the total iron in Venus is present as iron oxide in the mantle, so that the core-to-mantle ratio is smaller than in the Earth. This model implies that Venus is more oxidized than the Earth, with its lower intrinsic density (i.e., corrected to equivalent pressures and temperatures) due to the larger amount of oxygen present. The difference between oxidation states is attributed to differing degrees of accretional heating arising from the relatively smaller mass of Venus. On the other hand, the second hypothesis maintains that Venus is more reduced than the Earth, with its mantle essentially devoid of oxidized iron. The difference intrinsic densities is attributed to the Earth accreting at a lower temperature than Venus as a result of the Earth's greater distance from the center of the nebula. As a result, large amounts of sulfur accreted on the Earth but not on Venus. The sulfur, which entered the core, is believed to have increased the mean density of the Earth because of its relatively high atomic weight. The hypothesis also implies that most of the Earth's potassium, because of its chalcophile properties, entered the core.These hypotheses are evaluated in the light of existing data. The second hypothesis leads to an intrinsic density for Venus which is only 0.4% smaller than that of the Earth. This difference is much smaller than is believed to exist. A wide range of chemical evidence is found to be unfavorable to this second hypothesis, but to be consistent with the interpretation that Venus is more oxidized than the Earth, as required by the first hypothesis.  相似文献   
49.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号