全文获取类型
收费全文 | 336篇 |
免费 | 8篇 |
国内免费 | 7篇 |
专业分类
测绘学 | 6篇 |
大气科学 | 12篇 |
地球物理 | 102篇 |
地质学 | 108篇 |
海洋学 | 22篇 |
天文学 | 61篇 |
综合类 | 3篇 |
自然地理 | 37篇 |
出版年
2021年 | 3篇 |
2020年 | 3篇 |
2019年 | 3篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 8篇 |
2015年 | 5篇 |
2014年 | 11篇 |
2013年 | 11篇 |
2012年 | 10篇 |
2011年 | 11篇 |
2010年 | 12篇 |
2009年 | 12篇 |
2008年 | 12篇 |
2007年 | 20篇 |
2006年 | 9篇 |
2005年 | 20篇 |
2004年 | 8篇 |
2003年 | 12篇 |
2002年 | 13篇 |
2001年 | 6篇 |
2000年 | 4篇 |
1999年 | 5篇 |
1998年 | 7篇 |
1997年 | 9篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 9篇 |
1993年 | 6篇 |
1992年 | 2篇 |
1991年 | 6篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 5篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 12篇 |
1983年 | 9篇 |
1982年 | 5篇 |
1981年 | 9篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1978年 | 6篇 |
1977年 | 3篇 |
1976年 | 6篇 |
1975年 | 2篇 |
1973年 | 5篇 |
1969年 | 1篇 |
1968年 | 3篇 |
排序方式: 共有351条查询结果,搜索用时 15 毫秒
71.
Don Snyder Ian S. E. Carmichael R. A. Wiebe 《Contributions to Mineralogy and Petrology》1993,113(1):73-86
The Newark Island layered intrusion, a composite intrusion displaying a similar fractionation sequence to the Skaergaard, has both dikes which preserved liquids fed into the intrusion and chilled pillows of liquids resident in the chamber. This study reports experimentally determined one atmosphere liquid lines of descent of these compositions as a function of oxygen fugacity which varies from QFM (quartz-fayalite-magnetite) to 0.5 log10 units above IW (iron-wustite). These experiments reveal a strong oxygen fugacity dependence on the order of appearance and relative abundances of the Fe–Ti oxide minerals. Titanomagnetite saturates prior to ilmenite at QFM, but the order is reversed at lower oxygen fugacities. In the layered series of the Newark Island intrusion, ilmenite arrives shortly before titanomagnetite and the titanomagnetite/ilmenite ratio decreases monotonically after the cumulus appearance of titanomagnetite. Comparison of the crystallization sequence in the intrusion with that of the experiments requires that the oxygen fugacity in the intrusion increased relative to QFM before titanomagnetite saturation and decreased afterward, but always remained between the QFM and IW buffers. Similar trends in the modes of the Fe–Ti oxides (ilmenite and titanomagnetite) in the Skaergaard, Kiglapait, and Somerset Dam intrusions along with Fe2O3/FeO ratios in MORBs suggest that such a temperature-oxygen fugacity path may be typical of tholeiitic magma differentiation. Calculations of the temperature-density paths of the experimental liquids indicate that, at all possible oxygen fugacities, the density must have decreased abruptly after Fe–Ti oxide saturation. Accordingly, liquids replenishing the intrusion after Fe–Ti oxide saturation should pond at the bottom of the chamber, quenching against older cumulates. Field observation at the Newark Island intrusion confirm this prediction. The similarities in the fractionation paths of several other layered intrusions to that of the Newark Island intrusion suggest that the density of the liquids in these intrusions also decreased after Fe–Ti oxide saturation. Experiments on a suggested initial Skaergaard liquid are consistent with this model. 相似文献
72.
73.
An Aleutian high-alumina basalt from the island of Atka at one atmosphere crystallizes plagioclase (1275°C) followed by olivine (1170°C) and clinopyroxene (1115°C). At oxygen fugacities along NNO, magnetite crystallizes below 1070°C, but its liquidus increases to at least 1175°C at an oxygen fugacity two log units above NNO. Phase relations at two kilobars pressure of melts containing small amounts of water are similar, although orthopyroxene and magnetite are observed to follow clinopyroxene. Amphibole crystallizes at near-liquidus temperatures only at water contents of melts approaching 4.5%. Amphibole assumes the liquidus in melts containing 5% water.Anhydrous melts crystallize plagioclase to 19 kbar, where garnet and clinopyroxene assume the liquidus. Olivine yields to clinopyroxene as the highest-temperature subliquidus phase at about 9 kbar.The array of compositions of basaltic Atka rocks, as displayed on appropriate pseudoternary projections, can be interpreted as a crystal fractionation path at moderate pressure (8 kbar) and small melt-water contents. The interpreted fractionating minerals are olivine, clinopyroxene, plagioclase, and (probably) magnetite. (The actual phenocrysts in Atka basalts like AT-1, which lacks phenocrystic clinopyroxene, must have crystallized at pressure less than 8 kbar, however.) The compositions of two-pyroxene andesites from Atka can be interpreted to lie on a lower-pressure fractionation trend at melt water contents of 2–3%. Such water contents are consistent with the complete absence of amphibole in any Atka rocks and are suggestive that water contents of the basaltic magmas, if the basalts are parental to the andesites, were 1–2%. 相似文献
74.
75.
76.
Don Swanson 《Bulletin of Volcanology》1994,56(2):133
American Scientist , I think. One panel shows an Einstein-like figure in an easy chair with a pencil and pad of paper; this panel is labeled Big Science. The other panel shows the headquarters of a high-tech company and is labeled Little Science. Think about it. Science builds on testable ideas, often qualitative in nature, that commonly arise from observations of natural phenomena. Technology confirms or denies those ideas and helps to quantify them. Both are important, and there is considerable feedback, but fundamentally the ideas drive the technology. Hence the cartoonist had it right, despite society’s common perception of what is big and what is little. Big bucks do not equal big science. Volcanology is a science, the study of volcanoes. Ideas are key to our understanding of how and why volcanoes erupt. Many of these ideas are formulated from direct observations of volcanoes and their products before, during, and after eruptions. Observational volcanology may seem old-fashioned today but remains one of the most stimulating endeavors I know. If not big science, at least it is moderate science. And rather simple, too. All you need are your eyes, ears, nose, and brain, together with suitable equipment for the situation (often only a hammer or spade). In many instances simple observations and related measurements provide fundamental information about how volcanoes work. I described three such instances in Chapter 21 of USGS Bulletin 1966 and elaborated there my feelings about the importance of field observations for monitoring volcanoes and the concept of keeping monitoring, i.e., repeated direct observation, as simple as practical. I am disheartened by the recent deaths of volcanologists in the field but encouraged by the general understanding that the volcanologic community has shown. No one wants the death rate to continue unchecked, but no one is seriously suggesting cutting back on field observations by volcanologists either. The best way to reduce fatalities is to understand the volcano better. The best way to understand the volcano better involves field observations as well as electronic sensors. Meanwhile, it is well to remember that volcanology is the study of volcanoes, and that purely scientific, curiosity-driven motives are as justified as those designed purely to mitigate risks, and I think more valuable in the end. Curiosity leads to understanding, and understanding is the paramount goal of the science as well as the soundest basis for reducing risk. Volcanologists who are curious will get themselves into trouble and sometimes die because of it. It is often stated that we must weigh the potential benefits and risks before doing something that may be perceived as risky. Of course we must, but it is mathematically impossible to solve one equation with two unknowns, and generally the potential benefits and risks are both unknowns. In the end it comes down to common sense, which varies among individuals and in any case is far from foolproof. Let is be no other way, and let us praise the curious as we mourn the dead. 相似文献
77.
Don L. Boyer 《地球物理与天体物理流体动力学》2013,107(1):165-184
Abstract The flow of a rotating homogeneous, incompressible fluid past a long ridge is investigated. An analysis is presented for flows in which E ? 1, Ro ~ E½, H/D ~ E0, h/D ~ E½ and cosα ~ E0 where E is the Ekman number, Ro the Rossby number, H/D the fluid depth to ridge width ratio, h/D the ridge height to ridge width ratio and α the angle between the free stream flow and a line perpendicular to the ridge axis. The analysis includes effects of the nonlinear inertial terms. Particular examples of a ridge of triangular cross section and a sinusoidal topography are investigated in some detail. Experiments are presented for a triangular ridge which are in good agreement with the theory. 相似文献
78.
Edge-driven convection 总被引:23,自引:0,他引:23
We consider a series of simple calculations with a step-function change in thickness of the lithosphere and imposed, far-field boundary conditions to illustrate the influence of the lithosphere on mantle flow. We consider the effect of aspect ratio and far-field boundary conditions on the small-scale flow driven by a discontinuity in the thickness of the lithosphere. In an isothermal mantle, with no other outside influences, the basic small-scale flow aligns with the lithosphere such that there is a downwelling at the lithospheric discontinuity (edge-driven flow); however, the pattern of the small-scale flow is strongly dependent on the large-scale thermal structure of a much broader area of the upper mantle. Long-wavelength temperature anomalies in the upper mantle can overwhelm edge-driven flow on a short timescale; however, convective motions work to homogenize these anomalies on the order of 100 million years while cratonic roots can remain stable for longer time periods. A systematic study of the effect of the boundary conditions and aspect ratio of the domain shows that small-scale, and large-scale flows are driven by the lithosphere. Edge-driven flow produces velocities on the order of 20 mm/yr. This is comparable to calculations by others and we can expect an increase in this rate as the mantle viscosity is decreased. 相似文献
79.
80.
Two silver (migratory) male freshwater eels, Anguilla dieffenbachii, were caught in a commercial trawl net in the South Taranaki Bight in April 2014. The capture date and the relatively small eye size indicated that both eels had probably only recently entered the sea. This is the first record of male A. dieffenbachii caught at sea, en route to the presumed spawning area in the South Fiji Basin. 相似文献