首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   8篇
测绘学   31篇
大气科学   14篇
地球物理   55篇
地质学   177篇
海洋学   9篇
天文学   57篇
自然地理   12篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2018年   10篇
  2017年   22篇
  2016年   10篇
  2015年   8篇
  2014年   24篇
  2013年   16篇
  2012年   16篇
  2011年   19篇
  2010年   13篇
  2009年   21篇
  2008年   10篇
  2007年   15篇
  2006年   7篇
  2005年   10篇
  2004年   4篇
  2003年   8篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1997年   10篇
  1996年   7篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1976年   2篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1967年   1篇
  1964年   1篇
  1963年   3篇
  1962年   1篇
排序方式: 共有355条查询结果,搜索用时 140 毫秒
31.
The mapability of Landsat images has opened up a new potentiality for study of channel pattern changes which was earlier not so easy due to nonavailability of suitable evidences at different timespans. Middle Ganga plain covering largely the northern part of Bihar and parts of eastern Uttar Pradesh is in a slate of perpetual flux due to large scale channel migration and avulsion resulting in devastating floods. Mosaic of three Landsat images has helped to study the channel changes which have occurred since 1935. The course of the river Ganga has beeh digitised along a basal line and two dimensional coordinates are taken at as many as more than fifty sample points for studying the magnitude and direction of channel changes during 1935–1975 period. The analysis shows that the main multiple channel river Ganga is under the huge hydrostatic thrust to be shifted towards south of its basin annually at a very high rate of 100 Meter per year all along the course except at its upstream near Ghazipur and at Monghyr where the shifting is towards north. The northward bend at Monghyr may be due to the presence of the Precambrian outliers here. For the multi-and single channelld tributaries of Ganga in channel behaviour is mainly in three directions—the lower water channels in the floodplain of Ganga are shifting to the south in conformity with that of their parent stream, the tributaries in Gogra-Gandak doab are shifting towards east but the shifting of the Kosi-Mahananda group of tributaries in the eastern part of the basin is towards west These channel pattern changes thus known at the interregional scale from the Landsat images may further be integrated with the study in hydrogeomorphology and their pertinent environmental impact.  相似文献   
32.
We have analyzed the solar irradiance data from the Earth Radiation Budget Satellite(ERBS)during the time period from 1984 October 15 to 2003 October 15.By first filtering the data by Simple Exponential Smoothing,we have applied the periodogram method to the processed data in order to search for its time variation.The study exhibits multi-periodicities on these data around 110,118,574 and 740d with very high confidence levels(more than 99%).These periods are significantly similar to the periods of other solar activities which may suggest that solar irradiance may be associated with other solar activities.  相似文献   
33.
The bedded felsic tuff exposed in Rutland Island, Andaman, consists of two facies:
–  white massive tuff with ill-defined bedding contacts (facies-A) and  相似文献   
34.
The relation between alkaline magmatism and tectonism has been a contentious issue, particularly for the Precambrian continental regions. Alkaline complexes at the southwestern margin of Eastern Ghats belt, India, have been interpreted as rift-valley magmatism. However, those complexes occurring in granulite ensemble in the interior segments of the Eastern Ghats belt could not possibly be related to the rift-system, assumed for the western margin of the Eastern Ghats belt. Koraput complex was emplaced in a pull-apart structure, dominated by magmatic fabrics and geochemically similar to a fractionated alkaline complex, compatible with an alkalibasalt series. Rairakhol complex, on the other hand, shows dominantly solid-state deformation fabrics and geochemically similar to a fractionated calc-alkaline suite. Isotopic data for the Koraput complex indicate ca. 917 Ma alkaline magmatism from a depleted mantle source and postcrystalline thermal overprint at ca. 745 Ma, also recorded from sheared metapelitic country rocks. The calc-alkaline magmatism of the Rairakhol complex occurred around 938 Ma, from an enriched mantle source, closely following Grenvillian granulite facies imprint in the charnockitic country rocks.  相似文献   
35.
In this study, the Tropical Rainfall Measurement Mission based Microwave Imager estimates (2A12) have been used to compare and contrast the characteristics of cloud liquid water and ice over the Indian land region and the ocean surrounding it, during the premonsoon (May) and monsoon (June–September) seasons. Based on the spatial homogeneity of rainfall, we have selected five regions for our study (three over ocean, two over land). Comparison across three ocean regions suggests that the cloud liquid water (CLW) over the orographically influenced Arabian Sea (close to the Indian west coast) behaves differently from the CLW over a trapped ocean (Bay of Bengal) or an open ocean (equatorial Indian Ocean). Specifically, the Arabian Sea region shows higher liquid water for a lower range of rainfall, whereas the Bay of Bengal and the equatorial Indian Ocean show higher liquid water for a higher range of rainfall. Apart from geographic differences, we also documented seasonal differences by comparing CLW profiles between monsoon and premonsoon periods, as well as between early and peak phases of the monsoon. We find that the CLW during the lean periods of rainfall (May or June) is higher than during the peak and late monsoon season (July–September) for raining clouds. As active and break phases are important signatures of the monsoon progression, we also analysed the differences in CLW during various phases of the monsoon, namely, active, break, active-to-break and break-to-active transition phases. We find that the cloud liquid water content during the break-to-active transition phase is significantly higher than during the active-to-break transition phase over central India. We speculate that this could be attributed to higher amount of aerosol loading over this region during the break phase. We lend credence to this aerosol-CLW/rain association by comparing the central Indian CLW with that over southeast Asia (where the aerosol loading is significantly smaller) and find that in the latter region, there are no significant differences in CLW during the different phases of the monsoon. While our hypothesis needs to be further investigated with numerical models, the results presented in this study can potentially serve as a good benchmark in evaluating the performance of cloud resolving models over the Indian region.  相似文献   
36.
37.
38.
This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India–Seychelles rifting during Late Cretaceous–Early Paleocene, was studied, and the paleostress tensors were deduced. Near N–S trending shear zones, lineaments, and faults were already reported without significant detail. An E–W extension was envisaged by the previous workers to explain the India–Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N–S brittle shear zones and also those faults (sub-vertical, ~NE–SW/~NW–SE, and few ~N–S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N–S to ~NE–SW/~NW–SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW–SE/NE–SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N–S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N–S extension is put forward that refutes the popular view of E–W India–Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE–SW and ~NW–SE, with some ~N–S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of the DLIP erupted. Further studies of magma-rich passive margins with respect to timing and architecture of deformation and emplacement of volcanics are required.  相似文献   
39.
The regional impacts of future climate changes are principally driven by changes in energy fluxes. In this study, measurements on micrometeorological and biophysical variables along with surface energy exchange were made over a coniferous subtropical chir pine (Pinus roxburghii) plantation ecosystem at Forest Research Institute, Doon valley, India. The energy balance components were analyzed for two years to understand the variability of surface energy fluxes, their drivers, and closure pattern. The period covered two growth cycles of pine in the years 2010 and 2011 without and with understory growth. Net short wave and long wave radiative fluxes substantially varied with cloud dynamics, season, rainfall induced surface wetness, and green growth. The study clearly brought out the intimate link of albedo dynamics in chir pine system with dynamics of leaf area index (LAI), soil moisture, and changes in understory background. Rainfall was found to have tight linear coupling with latent heat fluxes. Latent heat flux during monsoon period was found to be higher in higher rainfall year (2010) than in lower rainfall year (2011). Higher or lower pre-monsoon sensible heat fluxes were succeeded by noticeably higher or lower monsoon rainfall respectively. Proportion of latent heat flux to net radiation typically followed the growth curve of green vegetation fraction, but with time lag. The analysis of energy balance closure (EBC) showed that the residual energy varied largely within ±30% of net available energy and the non-closure periods were marked by higher rainspells or forced clearance of understory growths.  相似文献   
40.
An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error statistics of the decay model shows that the model was able to predict the decaying intensity after landfall with reasonable accuracy. The performance statistics demonstrates the potential of the system for improving operational cyclone forecast service over the Indian seas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号