首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   25篇
  国内免费   4篇
测绘学   4篇
大气科学   31篇
地球物理   92篇
地质学   192篇
海洋学   15篇
天文学   109篇
自然地理   20篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   16篇
  2015年   15篇
  2014年   18篇
  2013年   19篇
  2012年   15篇
  2011年   23篇
  2010年   21篇
  2009年   20篇
  2008年   14篇
  2007年   14篇
  2006年   13篇
  2005年   6篇
  2004年   21篇
  2003年   8篇
  2002年   14篇
  2001年   13篇
  2000年   12篇
  1999年   6篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1986年   5篇
  1985年   10篇
  1984年   16篇
  1983年   7篇
  1982年   5篇
  1980年   11篇
  1979年   4篇
  1977年   4篇
  1976年   5篇
  1975年   8篇
  1974年   5篇
  1973年   3篇
  1971年   5篇
  1970年   4篇
  1967年   4篇
  1964年   3篇
  1962年   4篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
101.
The in situ measurements of electron contents from GRACE K-band (dual-frequency) ranging system and CHAMP planar Langmuir probe were used to validate the international reference ionosphere (IRI) models. The comparison using measurements from year 2003 to 2007 shows a general agreement between data and the model outputs. The improvement in the newer IRI model (IRI-2007) is evident with the measurements from the GRACE satellites orbiting at the higher altitude. We present the comparison between the models and data comprehensively for various cases in solar activity, local time, season, and latitude. The IRI models do not well predict the electron density in the years 2006 and later, when the solar activity is extremely low. The IRI models generally overestimate the electron density during local winter while they underestimate during local summer. In the equatorial region, the large difference at local sunrise lasts for all years and all seasons. The IRI models do not perform well in predicting the anomaly in the polar region such as the Weddell Sea Anomaly. These discrepancies are likely due to smoothed (12-month averaged) solar activity indices used in the IRI models and due to insufficient spherical harmonic representation not able to capture small spatial scales. In near future, further improvement on the IRI models is expected by assimilating those in situ satellite data by implementing higher resolution (spatial and temporal) parameterizations.  相似文献   
102.
Maxima of calculated topographical line-of-sight (LOS) gravity attractions caused by Ishtar Terra are shifted to the north with respect to the measured LOS free air gravity maxima south of the highland. This implies a tendency to isostatic compensation of central Ishtar and mass surpluses at the continental border and the southern forelands.The following scenario is compatible with the interpretation of the gravity anomalies and morphological features. Relative motions of the lowland Sedna Planitia against continental Ishtar Terra have caused buckling and flat subduction of the lowland lithospheric material. (Deep subduction can be ruled out by thermal reasons). The free air gravity high is modelled by surplus masses of the buckling and of the high density subducting plate. Evidence for this is given by several compressional features like Ut and Vesta Rupes at the southern continental border and ridges at the SW-flanks of Maxwell Montes. It is further supported by several possible volcanic-tectonic depressions located in the southern part of Ishtar. This local interpretation does not necessarily imply the existence of global plate tectonics on Venus like on Earth, but at least limited horizontal movements of the Venusian lithosphere seem to be likely. This result shows that plate recycling must be considered for heat transfer through the lithosphere beside conduction and hot spot volcanism.Contribution No. 273, Institut für Geophysik der Universität Kiel, F.R.G.  相似文献   
103.
104.
CO2 Mitigation by Agriculture: An Overview   总被引:6,自引:0,他引:6  
Agriculture currently contributes significantly to the increase of CO2 in the atmosphere, primarily through the conversion of native ecosystems to agricultural uses in the tropics. Yet there are major opportunities for mitigation of CO2 and other greenhouse gas emissions through changes in the use and management of agricultural lands. Agricultural mitigation options can be broadly divided into two categories: (I) strategies to maintain and increase stocks of organic C in soils (and biomass), and (ii) reductions in fossil C consumption, including reduced emissions by the agricultural sector itself and through agricultural production of biofuels to substitute for fossil fuels.Reducing the conversion of new land to agriculture in the tropics could substantially reduce CO2 emissions, but this option faces several difficult issues including population increase, land tenure and other socio-political factors in developing countries. The most significant opportunities for reducing tropical land conversions are in the humid tropics and in tropical wetlands. An important linkage is to improve the productivity and sustainability of existing agricultural lands in these regions.Globally, we estimate potential agricultural CO2 mitigation through soil C sequestration to be 0.4-0.9 Pg C y-1, through better management of existing agricultural soils, restoration of degraded lands, permanent "set-asides" of surplus agricultural lands in temperate developed countries and restoration of 10-20% of former wetlands now being used for agriculture. However, soils have a finite capacity to store additional C and therefore any increases in C stocks following changes in management would be largely realized within 50-100 years.Mitigation potential through reducing direct agricultural emissions is modest, 0.01-0.05 Pg C y-1. However, the potential to offset fossil C consumption through the use of biofuels produced by agriculture is substantial, 0.5-1.6 Pg C y-1, mainly through the production of dedicated biofuel crops with a smaller contribution (0.2-0.3 Pg C y-1) from crop residues.Many agricultural mitigation options represent "win-win" situations, in that there are important side benefits, in addition to CO2 mitigation, that could be achieved, e.g. improved soil fertility with higher soil organic matter, protection of lands poorly suited for permanent agriculture, cost saving for fossil fuel inputs and diversification of agricultural production (e.g. biofuels). However, the needs for global food production and farmer/societal acceptability suggest that mitigation technologies should conform to: (I) the enhancement of agricultural production levels in parts of the world where food production and population demand are in delicate balance and (ii) the accrual of additional benefits to the farmer (e.g., reduced labor, reduced or more efficient use of inputs) and society at large.  相似文献   
105.
Dieter Fritsch 《Tectonophysics》1986,130(1-4):407-420
Progress in model building and in advanced exposure and evaluation methods is leading photogrammetry up into the field of precise point determination, up to now solved by classical geodetic triangulation and/or trilateration. In combination with the statistical test theory, photogrammetry can be used as a tool to detect recent crustal movements or deformations of man-made constructions, such as in coal mining or oil and gas exploitation.

For these reasons, this paper deals with model building for modern aerial triangulation with respect to hypothesis tests to detect point displacements greater than the measurement noise. An example from brown-coal mining demonstrates accuracies and the application of some statistical tests shows the efficiency of advanced aerial photogrammetry.  相似文献   

106.
Cordierite samples from pegmatites and metamorphic rocks have been analysed for major [electron microprobe analysis (EMPA)] and trace elements [inductively coupled plasma mass spectrometry (ICP-MS), secondary ion mass spectrometry analyses (SIMS)] as well as for H2O and CO2 (coulometric titration), and the results evaluated in conjunction with published data in order to determine which exchange mechanisms are significant. Apart from the homovalent substitutions FeMg−1 and MnMg−1 on the octahedral site, some minor KNa−1 on the Ch0 channel site, and Fe3+Al−1 on the T11 tetrahedral site, the three most important substitution mechanisms are those for the incorporation of Li on the octahedral sites (NaLi□−1Mg−1), and of Be and other divalent cations on the tetrahedral T11 site (NaBe□−1Al−1 and Na(Mg,Fe2+)□−1Al−1). The dominant role of the last vector is clearly demonstrated. We propose a new generalized formula for cordierite: Ch(Na,K)0–1 VI(Mg,Fe2+,Mn,Li)2 IVSi5 IVAl3 IV(Al, Be, Mg, Fe2+, Fe3+)O18 *xCh(H2O, CO2…). Our results show that the population of (Mg, Fe2+) on the T11-site is limited to about 0.08 a.p.f.u. Other exchange mechanisms that were encountered in experiments operate only under PT conditions or in bulk compositions that are rarely realized in nature. Routine analyses by electron microprobe in which Li and Be are not determined can be plotted as (Mg+Fe+Mn) versus (Si+Al) to assess whether significant amounts of Li and Be could be present. These amounts can be calculated as Li (a.p.f.u.)=Al+Na–4 and Be (a.p.f.u.)=10–2Al–M2+–Na.  相似文献   
107.
Biostratigraphic research, based on palynomorphs and ammonoids, of the tectonically imbricated lithological succession of the Neves Corvo mine, in the Portuguese part of the Iberian Pyrite Belt, has yielded ages for all formerly recognised lithostratigraphic units. These can be assembled in three main lithological sequences: (1) detrital sandy/shale substrate (Phyllite-Quartzite Formation) of late Famennian age; (2) Volcano-Sedimentary Complex, divided into a lower and an upper suite, in which one basic, three dolerite sills and four felsic volcanic units and a mineralised package of massive sulphides are identified with ages which range from the late Famennian to the late Visean; (3) flysch succession (Mértola Formation) composed of shale and greywacke dated as late Visean to early Serpukhovian. Precise biostratigraphic dating of the sedimentrary host rocks of massive sulphide mineralisation constrains the age of the latter to the late Strunian (354.8–354.0 Ma). Three stratigraphic hiatuses, corresponding to early/middle Strunian, Tournaisian and early Visean respectively and a south-westward progressive unconformity were also recognised. Sequences 1 and 2 are related to extensional episodes while sequence 3 marks the beginning of compressive tectonic inversion which gave rise to south-westward flysch progradation in close relation to a foreland basin development. Our results lead to the reinterpretation of the tectonic structure of the Neves Corvo mine, with implications for the interpretation of the regional basin dynamics and metal exploration.Editorial handling: F. Tornos  相似文献   
108.
General geochemical parameters of water, superficial sediments, and suspended particulate matter (SPM) were determined from small shallow saline lakes (soda ponds) as well as from lake Neusiedlersee in eastern Austria. Additionally, instrumental neutron activation analysis (INAA) was used to determine the distribution of major, rare earth and other trace elements in superficial sediments and SPM. Chemical results show remarkable differences in salinity and ionic strength between the investigated ponds. Anthropogenic effects, such as drawdown of ground water level and a loss of lake water due to drainage, are clearly reflected in obtained chemical and geological data. Due to a strong dependence of the complexation and scavenging behavior of the rare earth elements (REE) on ionic strength, a significant difference between REE concentrations in soda ponds with different anthropogenic impact was found. The content and composition of authigenic evaporitic minerals in superficial sediments and SPM clearly differ with a fluctuating water level and salt concentration. Furthermore, we determined the distribution of major and trace elements in superficial sediments of a nearby fluvial system. Our results show a clear correlation between REE superficial sediment concentrations in anthropogenically degraded soda ponds and fluvial system. Therefore, we assume that REE concentrations of sediments and SPM are suitable for the study of geochemical changes of inland saline lakes due to anthropogenic impacts on water balance.  相似文献   
109.
Throughout much of Earth's history, marine carbonates have represented one of the most important geological archives of environmental change. Several pivotal events during the Phanerozoic, such as mass extinctions or hyperthermal events have recently been associated with ocean acidification. Nevertheless, well‐defined geological proxies for past ocean acidification events are, at best, scarce. Here, experimental work explores the response of bivalve shell ultrastructure and isotope geochemistry (δ13C, δ18O and δ26Mg) to stressful environments, in particular to sea water acidification. In this study, the common blue mussel, Mytilus edulis, was cultured (from early juvenile stages to one year of age) at four pH regimes (pHNBS 7·2 to pH 8·0). Shell growth rate and ultrastructure of mainly the calcitic portion of the shells were compared between experimental treatments. Specimens exposed to low‐pH environments show patches of disordered calcitic fibre orientation in otherwise well‐structured shells. Furthermore, the electron backscattered diffraction analyses reveal that, under acidified conditions, the c‐axis of the calcite prisms exhibits a bimodal or multi‐modal distribution pattern. Similar shell disorder patterns have been reported from mytilids kept under naturally acidified sea water conditions. In contrast, this study found no evidence that different pH regimes affect shell carbon, oxygen or magnesium isotope ratios. Based on these observations, it is proposed that: (i) stressful environments, in this case low sea water pH, predictably affect bivalve biomineralization patterns; and (ii) these findings bear potential as a novel (petrographic) proxy for ancient sea water acidification. An assessment of the applicability of these data to well‐preserved fossil shell material from selected time intervals requires additional work.  相似文献   
110.
This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W r ) and biome-level water limitation (L TA), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L TA is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071–2100 compared to 1961–1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L TA, ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L TA tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L TA suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L TA would be reversed from predominantly positive to predominantly negative.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号