A meteorite, named for the location of its discovery near Lone Tree, Iowa, was found by Loren Westfall in May 1971. Electron microprobe and petrographic studies reveal its mineral composition to be olivine, low-calcium clinopyroxene, high-calcium clinopyroxene, troilite, kamacite, taenite and iron oxides. On the basis of texture, olivine composition (19% Fa), low-calcium clinopyroxene composition (17% Fs, 2% Wo) and metal (determined by modal analysis), this meteorite is classified as an H group bronzite chondrite. While it has characteristics of classes 3 and 4 (Van Schmus and Wood, 1967, Table 2) it fits class 4 better since low-calcium pyroxene has a MD of 5.6%, olivine has a MD of 3.2%, turbid glass is present in chondrules, feldspar is absent, and the matrix is opaque. The opacity of the matrix may be due to iron oxides in microfractures in a microcrystalline matrix. 相似文献
New radio and X-ray data are reported for the rich cluster Abell 2319. This object is known from optical data to consist of two separate clusters, which are displaced by about 10′ in the NW direction, and could be in a pre-merger state.
In the radio domain, the cluster is characterized by the presence of a central diffuse halo source, more extended and powerful than the prototype halo in the Coma cluster. The radio halo shows an irregular structure, elongated in the NE-SW direction, and also extended towards the NW. We also report data on the extended radio galaxies located within the halo, or in its proximity.
The cluster X-ray brightness distribution shows an elongated structure towards the NW, in the radial region between 6′–12′, i.e. in the direction of the subcluster. This feature is exactly coincident with the NW extension of the radio halo. In addition, more substructural features are identified which could be due to an ongoing merger of the cluster with yet another mass component.
The radio halo morphology is correlated with the X-ray structure and the existence of merger processes in the cluster. The cluster merger can provide energy to maintain the radio halo, while the origin of the relativistic particles seems more problematic. 相似文献
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded. 相似文献
Observational evidence shows that gravitational lensing induces an angular correlation between the distribution of galaxies and much more distant QSOs. We use weak gravitational lensing theory to calculate this angular correlation, updating previous calculations and presenting new results exploring the dependence of the correlation on the large-scale structure. We study the dependence of the predictions on a variety of cosmological models, such as cold dark matter models, mixed dark matter models and models based on quintessence. We also study the dependence on the assumptions made about the nature of the primordial fluctuation spectrum: adiabatic, isocurvature and power spectra motivated by the cosmic string scenario are investigated. Special attention is paid to the issue of galaxy biasing, which is fully incorporated. We show that different mass power spectra imply distinct predictions for the angular correlation, and therefore the angular correlation provides an extra source of information about cosmological parameters and mechanisms of structure formation. We compare our results with observational data and discuss their potential uses. In particular, it is suggested that the observational determination of the galaxy–QSO correlation may be used to give an independent measurement of the mass power spectrum. 相似文献
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000 textl textmoltextH2textO-1 textcm-2text{l},text{mol}_{{text{H}_2}text{O}}^{-1},text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000 textl textmoltextH2textO-1 textcm-2text{l},text{mol}_{{text{H}_2}text{O}}^{-1},text{cm}^{-2}; stishovite ε = 485,000 ± 109,000 textl textmoltextH2textO-1 textcm-2text{l},text{mol}_{{text{H}_2}text{O}}^{-1},text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle. 相似文献
Fractal and multifractal techniques have been applied to various types of solar data to study the fractal properties of sunspots as well as the distribution of photospheric magnetic fields and the role of random motions on the solar surface in this distribution. Other research includes the investigation of changes in the fractal dimension as an indicator for solar flares. Here we evaluate the efficacy of two methods for determining the fractal dimension of an image data set: the Differential Box Counting scheme and a new method, the Jaenisch scheme. To determine the sensitivity of the techniques to changes in image complexity, various types of constructed images are analyzed. In addition, we apply this method to solar magnetogram data from Marshall Space Flight Center's vector magnetograph. 相似文献
The present status of the nuclear reaction rates determining the solar neutrino flux is discussed. This includes the reaction
rates for the two branching ratios of the three pp-chains involving the reactions 3He(3He,2p)4He and 3He(4He,γ)7Be for the
first branching, and 7Be(e−, νe)7Li and 7Be(p, γ)8B for the second branching. Mainly we will concentrate on the basic nuclear
reaction p + p → D + e+ + νe of the pp-chains. This reaction rate can only be determined using the theoretical methods. The
present status of the application of the relativistic field theory model of the deuteron for this reaction will be discussed.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
We present the results of the preliminary study of the comet Hale-Bopp spectrum obtained April 17, 1997 by K. Churyumov and F. Mussayev with the help of the 1-meter Zeiss reflector and the echelle spectrometer (spectral resolutionλ/Δ λ ≈ 50000), CCD and the long slit, oriented along the radius-vector(“Sun-comet direction”). Energy distributions for three selected regions including the C3, C2 (0-0) and CN(Δ ν = 0) molecules emissions of the comet Hale-Bopp spectrum were built. The rotational lines of the CN(Δ ν = 0) band were identified. The nature of the high emission peak near λ 4020 Å in the C3 band is discussed. The presence of the cometary continuum of the nonsolar origin is assumed. 相似文献
Scattering models of aerosol particles at the G-impact site (18 July1994) are presented for a number of likely compositional
candidates. Two differing dust particle population distribution functions are taken, along with varying aerosol cloud densities,
leading to differing optical depths. A number of models including graphite, amorphous carbon, astrophysical silicate, water
ice and a number of organic compounds are discussed, but no single material provides a fully satisfactory fit to the published
observations. A porous silicate/graphite composite is found to provide a good fit to the spectral data.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献