首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   7篇
  国内免费   2篇
测绘学   35篇
大气科学   11篇
地球物理   34篇
地质学   68篇
海洋学   4篇
天文学   18篇
综合类   1篇
自然地理   5篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   8篇
  2017年   14篇
  2016年   14篇
  2015年   10篇
  2014年   10篇
  2013年   15篇
  2012年   8篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   7篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1991年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1963年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
171.
The Alaknanda River is the most significant parental river of Ganga and forms an 11.5 km long and 2.5 km wide valley, locally known as the Srinagar Valley. The purpose of the present study is to highlight the recent landform changes in the Alaknanda channel course after the Kedarnath disaster, 2013. The Kedarnath flood completely changed the channel morphology of the Alaknanda river. The river changed its course at Srikot, SSB and Sriyantra Tapu with lower terraces being silted by sands at Ranihat, SSB, Bhaktiyana and Sriyantra Tapu. A new depositional terrace also formed opposite to Sriyantra Tapu. New lateral channel bars, braided channels, back swamp, rapids, pools and river souls were identified in the channel course of the river. Shifting of the channel course at Chauras still remains a serious problem for the Garhwal University Chauras Campus. About 2–5 m silt was deposited on the lower terrace at SSB, and ITI. The Srikot river bed was appended to 4.60 m. Shifting of channel course remains a serious threat to the Srinagar valley. Urbanization, sand and boulders mining, construction of dam, hydrological canal, road and settlements are the prominent example of anthropogenic activities which affect the shifting channel.  相似文献   
172.
The change in the type of vegetation fraction can induce major changes in the local effects such as local evaporation, surface radiation, etc., that in turn induces changes in the model simulated outputs. The present study deals with the effects of vegetation in climate modeling over the Indian region using the MM5 mesoscale model. The main objective of the present study is to investigate the impact of vegetation dataset derived from SPOT satellite by ISRO (Indian Space Research Organization) versus that of USGS (United States Geological Survey) vegetation dataset on the simulation of the Indian summer monsoon. The present study has been conducted for five monsoon seasons (1998–2002), giving emphasis over the two contrasting southwest monsoon seasons of 1998 (normal) and 2002 (deficient). The study reveals mixed results on the impact of vegetation datasets generated by ISRO and USGS on the simulations of the monsoon. Results indicate that the ISRO data has a positive impact on the simulations of the monsoon over northeastern India and along the western coast. The MM5-USGS has greater tendency of overestimation of rainfall. It has higher standard deviation indicating that it induces a dispersive effect on the rainfall simulation. Among the five years of study, it is seen that the RMSE of July and JJAS (June–July–August–September) for All India Rainfall is mostly lower for MM5-ISRO. Also, the bias of July and JJAS rainfall is mostly closer to unity for MM5-ISRO. The wind fields at 850 hPa and 200 hPa are also better simulated by MM5 using ISRO vegetation. The synoptic features like Somali jet and Tibetan anticyclone are simulated closer to the verification analysis by ISRO vegetation. The 2 m air temperature is also better simulated by ISRO vegetation over the northeastern India, showing greater spatial variability over the region. However, the JJAS total rainfall over north India and Deccan coast is better simulated using the USGS vegetation. Sensible heat flux over north-west India is also better simulated by MM5-USGS.  相似文献   
173.
The Mechi-Mahananda interfluve is a transitional area between the hills and the plains and exhibits a wide range of topographical variations. The drainage system of the area has a close relationship with lithology and landforms. The rivers originating in the hills attain a braiding character and have well developed alluvial fans. Piedmont plain covers a large area and has high ground water potential. The river terraces and flood plains also have high potentialities of ground water targeting. Fluctuation of water table is very high in the upper piedmont plain dependent upon the proximity to the drainage lines.  相似文献   
174.
We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4-3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10−12 s s−1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4-3658 will help us to resolve this.  相似文献   
175.
Stochastic erosion of composite banks in alluvial river bends   总被引:2,自引:0,他引:2       下载免费PDF全文
The erosion of composite river banks is a complex process involving a number of factors including fluvial erosion, seepage erosion, and cantilever mass failure. To predict the rate of bank erosion with these complexities, a stochastic bank erosion model is suitable to define the probability distribution of the controlling variables. In this study, a bank erosion model in a river bend is developed by coupling several bank erosion processes with an existing hydrodynamic and morphological model. The soil erodibility of cohesive bank layers was measured using a submerged jet test apparatus. Seasonal bank erosion rates for four consecutive years at a bend in the Brahmaputra River, India, were measured by repeated bankline surveys. The ability of the model to predict erosion was evaluated in the river bend that displayed active bank erosion. In this study, different monsoon conditions and the distribution functions of two variables were considered in estimating the stochastic bank erosion rate: the probability of the soil erodibility and stochastic stage hydrographs for the nth return period river stage. Additionally, the influences of the deflection angle of the streamflow, longitudinal slope of river channel, and bed material size on bank erosion rate were also investigated. The obtained stochastic erosion predictions were compared with the observed distribution of the annual‐average bank erosion rate of 45 river bends in the Brahmaputra River. The developed model appropriately predicted the short‐term morphological dynamics of sand‐bed river bends with composite banks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
176.
This paper presents meteorological measurements made during the antarctic summer period, on two 9 m and 3 m towers, on the rocky and ice shelf terrains of the Indian antarctic stations Maitri and Dakshin Gangotri, respectively. The measurements of fluctuations in temperature and wind speed made with relatively lesser precision instrumentation pertain to smaller wave numbers ~10-2 m-1 appropriate to outer scale L 0 of the atmospheric turbulence spectrum. Autocorrelation analysis of the fluctuations in temperature and wind speed has been performed. A new autoregressive scheme has been developed to represent the computed autocorrelation functions by a Yule statistical model, and to estimate the correlation period T 0 of the turbulent medium. Height profiles of outer scale L 0 of turbulence may be given in terms of T 0 and mean wind speed u. Further, the similarity theory of Monin-Obukhov has been used to compute height profiles of temperature structure parameter C T 2. At Maitri, values of L 0 and C T 2 are higher between 03–22 h local time than between 22–03 h. Values of L 0 and C T 2 are smaller over the ice shelf terrain of the Dakshin Gangotri station, compared to those over the rocky terrain of the Maitri station.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号