首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9177篇
  免费   345篇
  国内免费   132篇
测绘学   188篇
大气科学   730篇
地球物理   2129篇
地质学   3212篇
海洋学   872篇
天文学   1378篇
综合类   37篇
自然地理   1108篇
  2021年   116篇
  2020年   157篇
  2019年   160篇
  2018年   207篇
  2017年   204篇
  2016年   248篇
  2015年   212篇
  2014年   268篇
  2013年   503篇
  2012年   302篇
  2011年   435篇
  2010年   395篇
  2009年   490篇
  2008年   420篇
  2007年   428篇
  2006年   366篇
  2005年   310篇
  2004年   306篇
  2003年   314篇
  2002年   251篇
  2001年   212篇
  2000年   238篇
  1999年   177篇
  1998年   168篇
  1997年   151篇
  1996年   154篇
  1995年   146篇
  1994年   135篇
  1993年   107篇
  1992年   113篇
  1991年   78篇
  1990年   106篇
  1989年   86篇
  1988年   92篇
  1987年   101篇
  1986年   94篇
  1985年   125篇
  1984年   143篇
  1983年   138篇
  1982年   113篇
  1981年   95篇
  1980年   67篇
  1979年   79篇
  1978年   78篇
  1977年   70篇
  1976年   63篇
  1975年   79篇
  1974年   65篇
  1973年   79篇
  1972年   37篇
排序方式: 共有9654条查询结果,搜索用时 15 毫秒
951.
The structure and properties of the deep crust and upper mantle can be investigated using magnetotelluric observations. Near-surface and upper crustal complexities may distort or limit the capability of the data to adequately resolve deep structure. Granite batholiths have been regarded as windows into the lower crust in the context of seismic reflection data although the granite bodies themselves are not usually detected. Magnetotelluric data from SW England are here used to demonstrate that, in addition to imaging the internal structure and base of a granite, the batholith itself provides a suitable environment for the effective estimation of the resistivity structure to lower crustal and upper mantle depths.  相似文献   
952.
953.
In the caption for Figure 5, it was erroneously stated thatthe TS curves were normalized to L = 31.6 mm. They were normalizedto L = 38.35  相似文献   
954.
Abstract— The spatial distribution and amount of material transferred from the bolide involved in the Cretaceous/Tertiary (K/T) event to the target rocks at Chicxulub is still poorly constrained. In this study, Re‐Os isotopic analyses of impact melt breccias and lithic clasts from the Yaxcopoil‐1 (Yax‐1) borehole were used to determine the distribution and proportion of the bolide component in the target rocks. Because of the much greater concentration of Os in chondritic meteorites compared to the target rocks, little addition of the bolide component would be necessary to greatly perturb the Os concentration and isotopic composition of target rocks. Hence, this is a very sensitive means of examining bolide contributions to the target rocks. For the examined suite of samples, the initial 187Os/188Os ratios vary from 0.19 to 2.3. Conservative mixing calculations suggest that the bolide component comprised as much as approximately 0.1%, by mass, of some samples. Most samples, however, have negligible contributions from the bolide. No samples have Os that is dominated by the bolide component, so for this suite of samples, it is impossible to fingerprint the chemical nature of the bolide using relative abundances of siderophile elements. These results suggest that the bolide did not contribute a significant amount of material to the target rocks. This may, in turn, indicate that most of the bolide was vaporized upon impact or otherwise ejected without mixing with the melt from the target.  相似文献   
955.
Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984?–?1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, \(\sim130\) CME-rays, than during SMM. Important results include: The occurrence rate of the rays is \(\sim11~\%\) of all CMEs during solar minimum, but decreases to \(\sim7~\%\) at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3?–?4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is \(\sim12~R_{\odot}\), with the longest current sheet of \(18.5~R_{\odot}\). The mean CS growth rates are \(188~\mbox{km}\,\mathrm{s}^{-1}\) at minimum and \(324~\mbox{km}\,\mathrm{s}^{-1}\) at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of \(\sim350~\mbox{km}\,\mathrm{s}^{-1}\) with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within \(\sim1\) day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic field in the aftermath of CMEs.  相似文献   
956.
Polarised light from astronomical targets can yield a wealth of information about their source radiation mechanisms, and about the geometry of the scattered light regions. Optical observations, of both the linear and circular polarisation components, have been impeded due to non-optimised instrumentation. The need for suitable observing conditions and the availability of luminous targets are also limiting factors. The science motivation of any instrument adds constraints to its operation such as high signal-to-noise (SNR) and detector readout speeds. These factors in particular lead to a wide range of sources that have yet to be observed. The Galway Astronomical Stokes Polarimeter (GASP) has been specifically designed to make observations of these sources. GASP uses division of amplitude polarimeter (DOAP) (Compain and Drevillon Appl. Opt. 37, 5938–5944, 1998) to measure the four components of the Stokes vector (I, Q, U and V) simultaneously, which eliminates the constraints placed upon the need for moving parts during observation, and offers a real-time complete measurement of polarisation. Results from the GASP calibration are presented in this work for both a 1D detector system, and a pixel-by-pixel analysis on a 2D detector system. Following Compain et al. (Appl. Opt. 38, 3490–3502 1999) we use the Eigenvalue Calibration Method (ECM) to measure the polarimetric limitations of the instrument for each of the two systems. Consequently, the ECM is able to compensate for systematic errors introduced by the calibration optics, and it also accounts for all optical elements of the polarimeter in the output. Initial laboratory results of the ECM are presented, using APD detectors, where errors of 0.2 % and 0.1° were measured for the degree of linear polarisation (DOLP) and polarisation angle (PA) respectively. Channel-to-channel image registration is an important aspect of 2-D polarimetry. We present our calibration results of the measured Mueller matrix of each sample, used by the ECM, when 2 Andor iXon Ultra 897 detectors were loaned to the project. A set of Zenith flat-field images were recorded during an observing campaign at the Palomar 200 inch telescope in November 2012. From these we show the polarimetric errors from the spatial polarimetry indicating both the stability and absolute accuracy of GASP.  相似文献   
957.
The Middle Ordovician Rosroe Formation consists of some 1350 m of coarse, mainly siliciclastic to volcaniclastic sedimentary rocks, deposited in a submarine fan environment, and is restricted to the southern limb of the South Mayo Trough, western Ireland. Discrete allochthonous blocks, reaching 5 m in size, are present in the formation at several localities. Conodonts recovered from these blocks, collected from two separate locations, are of late Early and mid Mid Ordovician age. The conodonts have high conodont‐alteration indices (CAI 5) indicative of temperatures as high as 300o to max. 480 °C; some found in the Lough Nafooey area have abnormally high indices (CAI 6), which correspond to temperatures of about 360o to max. 550 °C. The oldest fauna is dominated by Periodon aff. aculeatus and characterized by Oepikodus evae typical of the Oepikodus evae Zone (Floian Stage; Stage Slices Fl2–3, Lower Ordovician). The younger conodont assemblage, characterized by Periodon macrodentatus associated with Oistodella pulchra, is referred to the P. macrodentatus conodont Biozone (lower Darriwilian; Stage Slices Dw1–2). The Rosroe conodont assemblages are of Laurentian affinity; comparable faunas are well known from several locations along the east to south‐eastern platform margin of Laurentia and the Notre Dame subzone of central Newfoundland, Canada. The faunal composition from the limestone blocks suggests a shelf edge to slope (or fringing carbonate) setting. The faunal assemblages are coeval with, respectively, the Tourmakeady Formation (Floian–Dapingian) and Srah Formation (Darriwilian) in the Tourmakeady Volcanic Group in the eastern part of the South Mayo Trough and probably are derived from the same or similar laterally equivalent short‐lived carbonate successions that accumulated at offshore ‘peri‐Laurentian’ islands, close to and along the Laurentian margin. During collapse of the carbonate system in the late Mid Ordovician, the blocks were transported down a steep slope and into deep‐water by debris flows, mixing with other rock types now found in the coarse polymict clastics of the Rosroe Formation. The faunas fill the stratigraphical ‘gap’ between the Lower Ordovician Lough Nafooey Volcanic Group and the upper Middle Ordovician Rosroe Formation in the South Mayo Trough and represent a brief interval conducive to carbonate accumulation in an otherwise siliciclastic‐ and volcaniclastic‐dominated sedimentary environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
958.
The first fossil echinoids are recorded from the Cayman Islands. A regular echinoid, Arbacia? sp., the spatangoids Brissus sp. cf. B. oblongus Wright and Schizaster sp. cf. S. americanus (Clark), and the clypeasteroid Clypeaster sp. are from the Middle Miocene Cayman Formation. Test fragments of the mellitid clypeasteroid, Leodia sexiesperforata (Leske), are from the Late Pleistocene Ironshore Formation. Miocene echinoids are preserved as (mainly internal) moulds; hence, all species are left in open nomenclature because of uncertainties regarding test architecture. All Miocene taxa are recorded from single specimens apart from the 27 assigned to Brissus. Schizaster sp. cf. S. americanus (Clark) is compared to a species from the Oligocene of the south‐east USA. Brissus sp. cf. B. oblongus is close in gross morphology to a taxon from the Miocene of Malta. Leodia sexiesperforata is identified from fragments with confidence, being the only extant Antillean sand dollar with elongate ambulacral petals that is limited to carbonate substrates. The Miocene echinoids of Grand Cayman, although of limited diversity, are mainly comprised of genera common in comparable mid‐Cenozoic carbonate environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号