全文获取类型
收费全文 | 8679篇 |
免费 | 278篇 |
国内免费 | 129篇 |
专业分类
测绘学 | 166篇 |
大气科学 | 717篇 |
地球物理 | 2021篇 |
地质学 | 3046篇 |
海洋学 | 800篇 |
天文学 | 1259篇 |
综合类 | 37篇 |
自然地理 | 1040篇 |
出版年
2022年 | 34篇 |
2021年 | 115篇 |
2020年 | 153篇 |
2019年 | 156篇 |
2018年 | 206篇 |
2017年 | 196篇 |
2016年 | 245篇 |
2015年 | 202篇 |
2014年 | 261篇 |
2013年 | 478篇 |
2012年 | 288篇 |
2011年 | 412篇 |
2010年 | 378篇 |
2009年 | 477篇 |
2008年 | 402篇 |
2007年 | 411篇 |
2006年 | 347篇 |
2005年 | 296篇 |
2004年 | 284篇 |
2003年 | 302篇 |
2002年 | 241篇 |
2001年 | 202篇 |
2000年 | 220篇 |
1999年 | 167篇 |
1998年 | 151篇 |
1997年 | 133篇 |
1996年 | 144篇 |
1995年 | 132篇 |
1994年 | 125篇 |
1993年 | 102篇 |
1992年 | 103篇 |
1991年 | 68篇 |
1990年 | 99篇 |
1989年 | 78篇 |
1988年 | 87篇 |
1987年 | 94篇 |
1986年 | 84篇 |
1985年 | 112篇 |
1984年 | 131篇 |
1983年 | 124篇 |
1982年 | 108篇 |
1981年 | 77篇 |
1980年 | 58篇 |
1979年 | 72篇 |
1978年 | 68篇 |
1977年 | 61篇 |
1976年 | 61篇 |
1975年 | 70篇 |
1974年 | 56篇 |
1973年 | 69篇 |
排序方式: 共有9086条查询结果,搜索用时 15 毫秒
991.
哈达门沟金矿床成岩成矿时代的定点定年研究 总被引:22,自引:3,他引:22
哈达门沟大型钾长石 -石英脉型金矿床位于华北地台北缘西段的乌拉山地区。矿区西部的大桦背花岗岩和矿区内的伟晶岩脉与金矿化均具有较为密切的空间关系 ,这导致不少研究者认为哈达门沟金矿床与大桦背岩体或伟晶岩之间也具有时间和成因联系。通过采用先进的高灵敏的高分辨率的离子探针 (SHRIMP)对大桦背岩体、伟晶岩脉和钾长石化蚀变岩进行的锆石 U- Pb定点定年研究表明 :伟晶岩脉形成于 (1836± 5)× 10 6a,属吕梁旋回 ;大桦背岩体形成于 (353± 7)× 10 6a,应为海西旋回早期产物 ;金矿化年龄小于或等于 (132± 2 )× 10 6a,应为燕山晚期。这些年龄结果说明 ,本区金矿化比大桦背岩体晚至少 2 2 0× 10 6a,这排除了金矿化与大桦背岩体和伟晶岩脉之间有任何成因联系的可能性。蚀变岩的年龄还证明 ,虽然乌拉山和胶东地区金矿床的围岩和年龄不同 ,但两地区的金矿化却几乎同时发生。此外 ,大桦背岩体的形成年龄与华北地块和蒙古古陆块碰撞作用发生的时间基本一致 ,因此大桦背岩体的 SHRIMP年龄为这一碰撞作用提供了可靠的年代学证据。 相似文献
992.
Kirsten L. Rasmussen David R. Lentz Hendrik Falck David. R.M. Pattison 《Ore Geology Reviews》2011,41(1):75-111
A field and petro-chemical classification of felsic magmatic phases (FMPs) at the world-class Cantung W skarn deposit was undertaken to document the evolution of magmatism and the relationships between different FMPs, metasomatism, and mineralization. Early FMPs include moderately differentiated (Zr/Hf = 18–26, Ti/Zr = 14–15) biotite monzogranitic plutons and early biotite-rich granitic dykes, and compositionally similar quartz–feldspar porphyry dykes. Late, highly fractionated (Zr/Hf = 8–17, Ti/Zr = 3–13) FMPs sourced from a deeper monzogranitic intrusion include: (1) leucocratic biotite- or tourmaline-bearing dykes derived from localized entrapments of residual magma; and, (2) sub-vertical NE-trending aplitic dykes derived from a larger segregation of residual fluid- and incompatible element-enriched magma. The aplitic dykes have textures, morphologies, spatial associations, and a pervasive calcic metasomatic mineral assemblage (Ca-plagioclase + quartz or clinozoisite) indicative of syn-mineralization emplacement. Very late-stage overpressuring and initiation of sub-vertical fractures into the overlying plutonic carapace and country rocks by supercritical magmatic fluid led to an interaction with calcareous country rocks that resulted in an increased aCa2+ in the fluid and the concurrent precipitation of W skarn. Residual magma also ascended with, and quenched in equilibrium with the magmatic fluid to from the aplitic dykes, then was metasomatized by the fluid as it interacted with calcareous country rocks. Overall, highly fractionated and moderately to very highly undercooled FMPs at Cantung provide evidence for a large and evolving felsic magmatic system at depth that segregated and maintained a stable fluid- and incompatible element-enriched residual magma until the latest stages of crystallization. The detailed study of FMPs associated with magmatic-hydrothermal mineral deposits allow us to refine our understanding of these mineralizing systems and better define metallogenic and exploration models for intrusion-related mineralization. 相似文献
993.
Ground water management models require the repeated solution of a simulation model to identify an optimal solution to the management problem. Limited precision in simulation model calculations can cause optimization algorithms to produce erroneous solutions. Experiments are conducted on a transient field application with a streamflow depletion control management formulation solved with a response matrix approach. The experiment consists of solving the management model with different levels of simulation model solution precision and comparing the differences in optimal solutions obtained. The precision of simulation model solutions is controlled by choice of solver and convergence parameter and is monitored by observing reported budget discrepancy. The difference in management model solutions results from errors in computation of response coefficients. Error in the largest response coefficients is found to have the most significant impact on the optimal solution. Methods for diagnosing the adequacy of precision when simulation models are used in a management model framework are proposed. 相似文献
994.
Roberto J. Llansó Lisa C. Scott Jeffrey L. Hyland Daniel M. Dauer David E. Russell Frederick W. Kutz 《Estuaries and Coasts》2002,25(6):1231-1242
A benthic index of biotic integrity was developed for use in estuaries of the mid-Atlantic region of the United States (Delaware Bay estuary through Albemarle-Pamlico Sound). The index was developed for the Mid-Atlantic Integrated Assessment Program (MAIA) of the U.S. Environmental Protection Agency using procedures similar to those applied previously in Chesapeake Bay and southeastern estuaries, and was based on sampling in July through early October. Data from seven federal and state sampling programs were used to categorize sites as degraded or non-degraded based on dissolved oxygen, sediment contaminant, and sediment toxicity criteria. Various metrics of benthic community structure and function that distinguished between degraded and reference (non-degraded) sites were selected for each of five major habitat types defined by classification analysis of assemblages. Each metric was scored according to thresholds established on the distribution of values at reference sites, so that sites with low scoring metrics would be expected to show signs of degradation. For each habitat, metrics that correctly classified at least 50% of the degraded sites in the calibration data set were selected whenever possible to derive the index. The final index integrated the average score of the combination of metrics that performed best according to several criteria. Selected metrics included measures of productivity (abundance), diversity (number of taxa, Shannon-Wiener diversity, percent dominance), species composition and life history (percent abundance of pollution-indicative taxa, percent abundance of pollution-sensitive taxa, percent abundance of Bivalvia, Tanypodinae-Chironomidae abundance ratio), and trophic composition (percent abundance of deep-deposit feeders). The index correctly classified 82% of all sites in an independent data set. Classification efficiencies of sites were higher in the mesohaline and polyhaline habitats (81–92%) than in the oligohaline (71%) and the tidal freshwater (61%). Although application of the index to low salinity habitats should be done with caution, the MAIA index appeared to be quite reliable with a high likelihood of correctly identifying both degraded and non-degraded conditions. The index is expected to be of great utility in regional assessments as a tool for evaluating the integrity of benthic assemblages and tracking their condition over time. 相似文献
995.
Tyge D. Hermansen David R. Britton David J. Ayre Todd E. Minchinton 《Estuaries and Coasts》2014,37(3):621-635
The literature suggests that, in the tropics, mangroves are typically pollinated by a range of generalist pollinators, whereas in temperate populations, pollination biology is largely unstudied. We predicted that, for the mangrove Avicennia marina in temperate southeast Australia, pollinator diversity would be low and its pollination system modified by the exotic honeybee Apis mellifera. Multiyear surveys and experiments were used to test these hypotheses by determining the identity and frequency of flower visitors, quantifying pollinator foraging behaviour, determining the species composition of pollen loads, and demonstrating pollen removal and deposition. We identified 38 species that visited flowers, but only A. mellifera was a significant pollinator. It was the only species to carry large amounts of pollen and forage in a manner permitting transfer of pollen to stigmas. Moreover, A. mellifera was the numerically dominant flower visitor and was effective in both pollen removal and deposition. This study demonstrates the importance of distinguishing flower visitors from pollinators and emphasises the surprisingly widespread influence of the exotic A. mellifera. Finally, our study and a worldwide review of the literature on the pollination of mangroves reveal that the pollination biology of other mangrove systems requires similar scrutiny. 相似文献
996.
We present new high-pressure temperature experiments on melting phase relations of Fe-C-S systems with applications to metallic core formation in planetary interiors. Experiments were performed on Fe-5 wt% C-5 wt% S and Fe-5 wt% C-15 wt% S at 2-6 GPa and 1050-2000 °C in MgO capsules and on Fe-13 wt% S, Fe-5 wt% S, and Fe-1.4 wt% S at 2 GPa and 1600 °C in graphite capsules. Our experiments show that: (a) At a given P-T, the solubility of carbon in iron-rich metallic melt decreases modestly with increasing sulfur content and at sufficiently high concentration, the interaction between carbon and sulfur can cause formation of two immiscible melts, one rich in Fe-carbide and the other rich in Fe-sulfide. (b) The mutual solubility of carbon and sulfur increases with increasing pressure and no super-liquidus immiscibility in Fe-rich compositions is likely expected at pressures greater than 5-6 GPa even for bulk compositions that are volatile-rich. (c) The liquidus temperature in the Fe-C-S ternary is significantly different compared to the binary liquidus in the Fe-C and Fe-S systems. At 6 GPa, the liquidus of Fe-5 wt% C-5 wt% S is 150-200 °C lower than the Fe-5 wt% S. (d) For Fe-C-S bulk compositions with modest concentration of carbon, the sole liquidus phase is iron carbide, Fe3C at 2 GPa and Fe7C3 at 6 GPa and metallic iron crystallizes only with further cooling as sulfur is concentrated in the late crystallizing liquid. Our results suggest that for carbon and sulfur-rich core compositions, immiscibility induced core stratification can be expected for planets with core pressure less than ∼6 GPa. Thus planetary bodies in the outer solar system such as Ganymede, Europa, and Io with present day core-mantle boundary (CMB) pressures of ∼8, ∼5, and 7 GPa, respectively, if sufficiently volatile-rich, may either have a stratified core or may have experienced core stratification owing to liquid immiscibility at some stage of their accretion. A similar argument can be made for terrestrial planetary bodies such as Mercury and Earth’s Moon, but no such stratification is predicted for cores of terrestrial planets such as Earth, Venus, and Mars with the present day core pressure in the order ?136 GPa, ?100 GPa, and ?23 GPa. (e) Owing to different expected densities of Fe-rich (and carbon-bearing) and sulfur-rich metallic melts, their settling velocities are likely different; thus core formation in terrestrial planets may involve rain of more than one metallic melt through silicate magma ocean. (f) For small planetary bodies that have core pressures <6 GPa and have a molten core or outer core, settling of denser carbide-rich liquid or flotation of lighter, sulfide-rich melt may contribute to an early, short-lived geodynamo. 相似文献
997.
Giovanny M. Mosquera Patricio Crespo Lutz Breuer Jan Feyen David Windhorst 《水文研究》2020,34(9):2032-2047
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate. 相似文献
998.
David T. Adamson Thomas E. McHugh Michal W. Rysz Roberto Landazuri Mir Ahmad Seyedabbasi Patrick E. Haas Charles J. Newell 《Ground Water Monitoring & Remediation》2014,34(2):42-59
The results of comprehensive field testing of on‐site vapor‐phase‐based groundwater monitoring methods are presented to demonstrate their utility as a robust and cost‐effective approach for rapidly obtaining volatile organic compounds (VOCs) concentration data from a monitoring well. These methods—which rely on sensitive, commercially available field equipment to analyze vapor in equilibrium with groundwater—proved easy to implement and can be tailored to site‐specific needs, including multilevel sampling. During field testing, low‐flow groundwater concentrations could be reasonably estimated using submerged passive vapor diffusion samplers or field equilibration of collected groundwater (R2 = 0.85 to 0.96). These two methods are not as reliant on in‐well mixing to overcome vertical stratification within wells as simpler headspace methods. The importance of well and aquifer‐specific factors on concentration data (and therefore method selection) is highlighted, including the effect of changing in‐well patterns due to seasonal temperature gradients. Results indicated that vertical stratification was relatively limited within the set of wells included in these studies, resulting in similar performance for short depth‐discrete passive vapor diffusion samplers (constructed from 40‐mL vials) and longer samplers (2.5 to 5 feet in length) designed to cover a larger portion of the screened interval. A year‐long, multi‐event evaluation demonstrated that vapor‐phase‐based monitoring methods are no more variable than conventional groundwater monitoring methods, with both types subject to similar spatial and temporal variability that can be difficult to reduce. Vapor sampling methods represent a promising approach for estimation of groundwater concentrations by reducing the cost liabilities associated with monitoring while providing a more sustainable approach. 相似文献
999.
David Grigg 《GeoJournal》2002,57(4):283-294
Coffee and tea are both drunk in most countries, but typically one predominates. Coffee is the preferred drink in Europe and
the Americas, tea elsewhere. Until the early eighteenth century coffee production and consumption was confined to the Islamic
world, tea production to East Asia. European traders altered this pattern dramatically. The present pattern of coffee consumption
is influenced by income per capita, that of tea is not. Religious influences played some part in the early development of
both tea and coffee but have little relevance at the present. National factors have influenced wider patterns. British preference
for tea was taken to all their colonies. In recent years fears about health have had some influence on coffee consumption.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
1000.
We have studied data from the Galileo spacecraft's three remote sensing instruments (Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR)) covering the Zamama-Thor region of Io's antijovian hemisphere, and produced a geomorphological map of this region. This is the third of three regional maps we are producing from the Galileo spacecraft data. Our goal is to assess the variety of volcanic and tectonic materials and their interrelationships on Io using planetary mapping techniques, supplemented with all available Galileo remote sensing data. Based on the Galileo data analysis and our mapping, we have determined that the most recent geologic activity in the Zamama-Thor region has been dominated by two sites of large-scale volcanic surface changes. The Zamama Eruptive Center is a site of both explosive and effusive eruptions, which emanate from two relatively steep edifices (Zamama Tholi A and B) that appear to be built by both silicate and sulfur volcanism. A ∼100-km long flow field formed sometime after the 1979 Voyager flybys, which appears to be a site of promethean-style compound flows, flow-front SO2 plumes, and adjacent sulfur flows. Larger, possibly stealthy, plumes have on at least one occasion during the Galileo mission tapped a source that probably includes S and/or Cl to produce a red pyroclastic deposit from the same vent from which silicate lavas were erupted. The Thor Eruptive Center, which may have been active prior to Voyager, became active again during the Galileo mission between May and August 2001. A pillanian-style eruption at Thor included the tallest plume observed to date on Io (at least 500 km high) and new dark lava flows. The plume produced a central dark pyroclastic deposit (probably silicate-rich) and an outlying white diffuse ring that is SO2-rich. Mapping shows that several of the new dark lava flows around the plume vent have reoccupied sites of earlier flows. Unlike most of the other pillanian eruptions observed during the Galileo mission, the 2001 Thor eruption did not produce a large red ring deposit, indicating a relative lack of S and/or Cl gases interacting with the magma during that eruption. Between these two eruptive centers are two paterae, Thomagata and Reshef. Thomagata Patera is located on a large shield-like mesa and shows no signs of activity. In contrast, Reshef Patera is located on a large, irregular mesa that is apparently undergoing degradation through erosion (perhaps from SO2-sapping or chemical decomposition of sulfur-rich material) from multiple secondary volcanic centers. 相似文献