首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   10篇
  国内免费   1篇
测绘学   2篇
大气科学   15篇
地球物理   77篇
地质学   128篇
海洋学   45篇
天文学   103篇
综合类   1篇
自然地理   33篇
  2024年   2篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   16篇
  2015年   8篇
  2014年   8篇
  2013年   25篇
  2012年   10篇
  2011年   18篇
  2010年   12篇
  2009年   12篇
  2008年   19篇
  2007年   18篇
  2006年   24篇
  2005年   19篇
  2004年   29篇
  2003年   15篇
  2002年   22篇
  2001年   14篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1984年   8篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   3篇
  1972年   4篇
  1970年   4篇
  1958年   1篇
排序方式: 共有404条查询结果,搜索用时 15 毫秒
91.
92.
The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.  相似文献   
93.
94.
Ancient lakes, which are important centres of biodiversity and endemism, are threatened by a wide variety of human impacts. To assess environmental impact on ancient Lake Ohrid we have taken short sediment cores from two contrasting site locations, comprising a site of urban pollution and an apparently pristine area. Recent impacts on water quality and ecology were assessed using sediment, geochemical, ostracode, and diatom data derived from analysis of two 210Pb-dated sediment cores spanning the period from 1918 to 2009. According to the index of geoaccumulation, sediments were often moderately contaminated with As. Fe and Ni concentrations often exceeded reported maximum limits above which harmful effects on sediment-dwelling organisms are expected. Productivity in the (pristine) south-eastern part of Lake Ohrid (Sveti Naum) is generally lower than in the north, probably due to the strong influence of spring discharge. Low ostracode and diatom concentrations, low abundance of the epilimnetic diatom Cyclotella ocellata, and low values of TOC and TIC indicate a lower productivity from the early 1920s to the late 1980s. Since the mid 1970s, increased relative abundance of C. ocellata and increasing diatom concentration indicate increasing productivity in the south-eastern part. Rising numbers of ostracode valves and higher TIC and TOC contents in both sediment cores indicate an increase in productivity during the late 1980s. A slight increase in productivity near Sveti Naum continued from the early 1990s until 2009, witnessed by rising TC, TIC, and TOC content and a generally high number of ostracode valves and ostracode diversity. The area near the City of Struga (site of urban pollution) is also characterized by rising TOC and TIC contents and, furthermore, by increasing Cu, Fe, Pb, and Zn concentrations since the early 1990s. The recent reduction in the number of ostracode valves and ostracode diversity is probably caused by a higher heavy metal load into the lake. This suggests that living conditions for the endemic species in Lake Ohrid have become less favourable in the northern part of the lake, which might threaten the unique flora and fauna of Lake Ohrid.  相似文献   
95.
96.
Rainfall takes many flowpaths to reach a stream, and the success of riparian buffers in water quality management is significantly influenced by riparian hydrology. This paper presents results from hydrometric monitoring of riparian buffer hydrology in a pasture catchment. Runoff processes and riparian flowpaths were investigated on two planar hillslopes with regenerating grass and E. globulus buffers. Surface runoff and subsurface flows (A‐ and B‐horizons) were measured for 3 years using surface runoff collectors, subsurface troughs and piezometers. Water volumes moving through the riparian buffers via the measured flowpaths were ranked B‐horizon ? surface runoff ≈ A‐horizon. Runoff volumes through the B‐horizon troughs were an order of magnitude greater than those recorded for the most productive surface runoff plots or the A‐horizon troughs. Subsurface runoff and saturation‐excess overland flow (SOF) were limited to the winter months, whereas infiltration‐excess overland flow (IEOF) can occur all year round during intense storms. Surface runoff was recorded on 33 occasions, mostly during winter (late May–early October), and total annual surface runoff volumes collected by the 20 unconfined (2 m wide) runoff plots varied between > 80 and < 20 m3. Subsurface flow only occurred in winter, and the 6 m wide B‐horizon subsurface troughs flowed above 1 l s?1 continuously, whereas the A‐horizon troughs flowed infrequently (<6 days per year). In summer, surface runoff occurred as IEOF during intense storms in the E. globulus buffer, but not in the grass buffer. Observations suggest that surface crusting reduced the soil's infiltration capacity in the E. globulus buffer. During winter, SOF and seepage were observed in both buffers, but subsurface flow through the B‐horizon was the dominant flowpath. Key hydrologic differences between the grass and tree buffers are the generation of IEOF in the E. globulus buffer during intense summer storms, and the smaller subsurface runoff volumes and fewer flow days in the E. globulus buffer. Low surface runoff volumes are likely to limit the potential of these buffers to filter pollutants from surface runoff. High subsurface flow volumes and saturated conductivities are also likely to limit the residence time of water in the subsurface domain. Based on their hydrologic performance, the key roles of riparian buffers in this landscape are likely to be displacing sediment and nutrient‐generating activities away from streams and stabilizing channel morphology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
97.
Declining water quality on the south coast of Western Australia has been linked to current agricultural practices. Riparian buffers were identified as a tool available to farmers and catchment managers to achieve water quality improvements. This study compares 10 m wide regenerating grass and Eucalyptus globulus buffer performance. Surface and subsurface water quality were monitored over a 3‐year period. Nutrient and sediment transport were both dominated by subsurface flow, in particular through the B‐horizon, and this may seriously limit the surface‐runoff‐related functions of the riparian buffers. Riparian buffer trapping efficiencies were variable on an event basis and annual basis. The grass buffer reduced total phosphorus, filterable reactive phosphorus, total nitrogen and suspended sediment loads from surface runoff by 50 to 60%. The E. globulus buffer was not as effective, and total load reductions in surface runoff ranged between 10 and 40%. A key difference between the grass and E. globulus buffers was the seasonality of sediment and nutrient transport. Surface runoff, and therefore sediment and nutrient transport, occurred throughout the year in the E. globulus buffer, but only during the winter in the grass buffer. As a consequence of high summer nutrient and sediment concentrations, half the annual loads moving via surface runoff pathways through the E. globulus buffer were transported during intense summer storms. This study demonstrates that grass and E. globulus riparian buffers receiving runoff from pasture under natural rainfall can reduce sediment and nutrient loads from surface runoff. However, in this environment the B‐horizon subsurface flow is the dominant flowpath for nutrient transport through the riparian buffers, and this subsurface flow pathway carries contaminant loads at least three times greater than surface runoff. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
98.
99.
In mountain, snow driven catchments, snowmelt is supposed to be the primary contribution to river streamflows during spring. In these catchments the contribution of groundwater is not well documented because of the difficulty to monitor groundwater in such complex environment with deep aquifers. In this study we use an integrated hydrologic model to conduct numerical experiments that help quantify the effect of lateral groundwater flow on total annual and peak streamflow in predevelopment conditions. Our simulations focus on the Upper Colorado River Basin (UCRB; 2.8 × 105 km2) a well-documented mountain catchment for which both streamflow and water table measurements are available for several important sub-basins. For the simulated water year, our results suggest an increase in peak flow of up to 57% when lateral groundwater flow processes are included—an unexpected result for flood conditions generally assumed independent of groundwater. Additionally, inclusion of lateral groundwater flow moderately improved the model match to observations. The correlation coefficient for mean annual flows improved from 0.84 for the no lateral groundwater flow simulation to 0.98 for the lateral groundwater flow one. Spatially we see more pronounced differences between lateral and no lateral groundwater flow cases in areas of the domain with steeper topography. We also found distinct differences in the magnitude and spatial distribution of streamflow changes with and without lateral groundwater flow between Upper Colorado River Sub-basins. A sensitivity test that scaled hydraulic conductivity over two orders of magnitude was conducted for the lateral groundwater flow simulations. These results show that the impact of lateral groundwater flow is as large or larger than an order of magnitude change in hydraulic conductivity. While our results focus on the UCRB, we feel that these simulations have relevance to other headwaters systems worldwide.  相似文献   
100.
A suite of environmental proxies in annually laminated sediments from Hvítárvatn, a proglacial lake in the central highlands of Iceland, are used to reconstruct regional climate variability and glacial activity for the past 3000 years. Sedimentological analysis is supported by tephrostratigraphy to confirm the continuous, annual nature of the laminae, and a master varve chronology places proxies from multiple lake cores in a secure geochronology. Varve thickness is controlled by the rate of glacial erosion and efficiency of subglacial discharge from the adjacent Langjökull ice cap. The continuous presence of glacially derived clastic varves in the sediment fill confirms that the ice cap has occupied the lake catchment for the duration of the record. Varve thickness, varve thickness variance, ice-rafted debris, total organic carbon (mass flux and bulk concentration), and C:N of sedimentary organic matter, reveal a dynamic late Holocene climate with abrupt and large-scale changes in ice-cap size and landscape stability. A first-order trend toward cooler summers and ice-cap expansion is punctuated by notable periods of rapid ice cap growth and/or landscape instability at ca 1000 BC, 600 BC, 550 AD and 1250 AD. The largest perturbation began ca 1250 AD, signaling the onset of the Little Ice Age and the termination of three centuries of relative warmth during Medieval times. Consistent deposition of ice-rafted debris in Hvítárvatn is restricted to the last 250 years, demonstrating that Langjökull only advanced into Hvítárvatn during the coldest centuries of the Little Ice Age, beginning in the mid eighteenth century. This advance represents the glacial maximum for at least the last 3 ka, and likely since regional deglaciation 10 ka. The multi-centennial response of biological proxies to the Hekla 3 tephra deposition illustrates the significant impact of large explosive eruptions on local environments, and catchment sensitivity to perturbations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号