首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   7篇
  国内免费   2篇
测绘学   19篇
大气科学   42篇
地球物理   87篇
地质学   136篇
海洋学   46篇
天文学   25篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2023年   4篇
  2021年   11篇
  2020年   11篇
  2019年   5篇
  2018年   17篇
  2017年   18篇
  2016年   16篇
  2015年   17篇
  2014年   23篇
  2013年   26篇
  2012年   13篇
  2011年   28篇
  2010年   16篇
  2009年   27篇
  2008年   28篇
  2007年   21篇
  2006年   13篇
  2005年   13篇
  2004年   7篇
  2003年   8篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1987年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
51.
Since much of the flow of the Indus River originates in the Himalayas, Karakoram and Hindu Kush Mountains, an understanding of weather characteristics leading to precipitation over the region is essential for water resources management. This study examines the influence of upper level mid-latitude circulation on the summer precipitation over upper Indus basin (UIB). Using reanalysis data, a geopotential height index (GH) is defined at 200 hPa over central Asia, which has a significant correlation with the precipitation over UIB. GH has also shown significant correlation with the heat low (over Iran and Afghanistan and adjoining Pakistan), easterly shear of zonal winds (associated with central Asian high) and evapotranspiration (over UIB). It is argued that the geopotential height index has the potential to serve as a precursor for the precipitation over UIB. In order to assess the influence of irrigation on precipitation over UIB, a simplified irrigation scheme has been developed and applied to the regional climate model REMO. It has been shown that both versions of REMO (with and without irrigation) show significant correlations of GH with easterly wind shear and heat low. However contrary to reanalysis and the REMO version with irrigation, the REMO version without irrigation does not show any correlation between GH index and evapotranspiration as well as between geopotential height and precipitation over UIB, which is further confirmed by the quantitative analysis of extreme precipitation events over UIB. It is concluded that although atmospheric moisture over coastal Arabian sea region, triggered by wind shear and advected northward due to heat low, also contribute to the UIB precipitation. However for the availability of necessary moisture for precipitation over UIB, the major role is played by the evapotranspiration of water from irrigation. From the results it may also be inferred that the representation of irrigated water in climate models is unavoidable for studying the impact of global warming over the region.  相似文献   
52.
53.
The clinopyroxenes mentioned have been investigated by single crystal X-ray diffraction combined with electron microprobe analysis. The aim of this study was to characterize the crystal-chemical variations of clinopyroxenes in order to delineate the intracrystalline constraints which are characteristic of specific magmatic environments. Clinopyroxenes (cpx) crystallized from peralkaline ultrapotassic melt with kamafugitic and lamproitic affinities are characterized by high Si contents, which are insensitive to variations in silica abundance and silica saturation of the melt. The high Si occupancy in clinopyroxenes from kamafugitic magma is coupled to large M1 (i.e. Mg and Fe2+) and M2 (high Ca occupancy) sites, whereas in clinopyroxenes from magmas with lamproitic affinity, high Si content is combined with large M1 but small M2 sites. Clinopyroxenes from Romantype alkaline potassic and ultrapostassic rocks are characterized by an expanded tetrahedron (high IVA1 content) and small M1 site which is combined with small M2 polyhedron in clinopyroxenes from the potassic rocks and large M2 site in those from the ultrapotassic rocks.  相似文献   
54.
55.
The combined use of field investigation and laboratory analyses allowed the detailed stratigraphic reconstruction of the Pollena eruption (472 AD) of Somma-Vesuvius. Three main eruptive phases were recognized, related either to changes in the eruptive processes and/or to relative changes of melt composition. The eruption shows a pulsating behavior with deposition of pyroclastic fall beds and generation of dilute and dense pyroclastic density currents (PDC). The eruptive mechanisms and transportation dynamics were reconstructed for the whole eruption. Column heights were between 12 and 20 km, corresponding to mass discharge rates (MDR) of 7×106 kg/s and 3.4×107 kg/s. Eruptive dynamics were driven by magmatic fragmentation of a phono-tephritic to tephri-phonolitic magma during Phases I and II, whereas phreatomagmatic fragmentation dominated Phase III. Magma composition varies between phonolitic and tephritic-phonolitic, with melt viscosity likely not in excess of 103 Pa s. The volume of the pyroclastic fall deposits, calculated by using of proximal isopachs, is 0.44 km3. This increases to 1.38 km3 if ash volumes are extrapolated on a log thickness vs. square root area diagram using one distal isopach and column height.Editorial responsibility: R Cioni  相似文献   
56.
Local flash flood storms with a rapid hydrological response are a real challenge for quantitative precipitation forecasting (QPF). It is relevant to assess space domains, to which the QPF approaches are applicable. In this paper an attempt is made to evaluate the forecasting capability of a high-resolution numerical weather prediction (NWP) model by means of area-related QPF verification. The results presented concern two local convective events, which occurred in the Czech Republic (CR) on 13 and 15 July 2002 and caused local flash floods. We used the LM COSMO model (Lokall Model of the COSMO consortium) adapted to the horizontal resolution of 2.8 km over a model domain covering the CR. The 18 h forecast of convective precipitation was verified by using radar rainfall totals adjusted to the measured rain gauge data. The grid point-related root mean square error (RMSE) value was calculated over a square around the grid point under the assumption that rainfall values were randomly distributed within the square. The forecast accuracy was characterized by the mean RMSE over the whole verification domain. We attempt to show a dependence of both the RMSE field and the mean RMSE on the square size. The importance of a suitable merger between the radar and rain gauge datasets is demonstrated by a comparison between the verification results obtained with and without the gauge adjustment. The application of verification procedure demonstrates uncertainties in the precipitation forecasts. The model was integrated with initial conditions shifted by 0.5° distances. The four verifications, corresponding to the shifts in the four directions, show differences in the resulting QPF, which depend on the size of verification area and on the direction of the shift.  相似文献   
57.
Major and trace element and Sr–Nd–Hf–Pb isotopic data for the most primitive Tertiary lavas from the Veneto region (South-Eastern Alps, Italy) show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sri=0.70306–0.70378; Ndi=+3.9 to +6.8; Hfi=+6.4 to +8.1, 206Pb/204Pbi=18.786–19.574). P-wave seismic tomography of the mantle below the Veneto region shows the presence of low-velocity anomalies at depth, which is consistent with possible upwellings of plume material. Between the depths of 100–250 km the velocity anomalies are approximately 2–2.5% slower than average, implying a temperature excess of about 220–280 K, in agreement with estimates for other mantle plumes in the world. In this context, the Veneto volcanics may represent the shallow expression of a mantle upflow. The presence of a HIMU-DM component in a collision environment has significant geodynamic implications. Slab detachment and ensuing rise of deep mantle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting.  相似文献   
58.
Magnetic data interpretation faces difficulties due to the various shapes of magnetic anomalies and the positions of their extrema with respect to the causative bodies for different directions of the source magnetization. The well‐known transforms — reduction to the pole, pseudogravity field, and analytic signal (total gradient) — help in reducing the problem. Another way to achieve the required effect is the transformation of magnetic data, ΔT or Z, into values of the anomalous magnetic intensity T. In this respect, we have found some transforms based on differential operators such as the gradient of T and its modulus R = |?T|, the Laplacian L = ?2T, the product T ?2T and its square root Q, and the Laplacian ?2(T2) and its square root E, to be useful. They are slightly sensitive to the magnetization orientation and their extrema occur above the sources. For a 2D anomaly of a homogeneous causative body, the proposed transforms do not depend on the inclination of magnetization. In the 3D case, such independence does not exist even for the elementary field of a point dipole. The influence of the magnetization direction is estimated by an integral coefficient of sensitivity. This coefficient takes values of up to 2.0 for ΔT or Z anomalies, while their transforms T, R, E, Q and L have values of less than 0.28, 0.29, 0.24, 0.16 and 0.07, respectively, i.e. on average, 10 times less. The estimation of the centricity is carried out using the relative deviation of the principal extremum of the anomaly or its transforms from the epicentre of the model body at a depth equal to 100 units. For a ΔT anomaly this deviation is up to 67%; for the L transform it is less than 8%; for Q, E, R and T it is less than 10%, 15%, 20% and 25%, respectively. The proposed transforms take only non‐negative values. With respect to their shape, the peripheral magnetic extrema are removed, the anomalous configuration is simplified and the resolution of complicated interference patterns is improved. Their calculation does not require additional data for the direction of magnetization, which is an essential advantage over the reduction‐to‐the‐pole and pseudogravity‐field transforms. A joint analysis of the measured field and its transforms T, E and L offers possibilities for more confident separation of the anomalous effects and direct correlation to their sources. The model tests performed and the 3D field applications to real magnetic data confirm the useful properties of the transforms suggested here.  相似文献   
59.
At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na+-K+-Ca2+-Cl-SO42−/H2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described.In the system NaCl-CaSO4-H2O the missing anhydrite (CaSO4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na2SO4-CaSO4-H2O the observed glauberite (Na2SO4 · CaSO4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K2SO4 · CaSO4 · H2O) and goergeyite (K2SO4 · 5 CaSO4 · H2O) were determined, and a new phase was found at 200°C in the K2SO4-CaSO4-H2O system. Chemical and single crystal structure analysis give the formula K2SO4 · CaSO4. The structure is isostructural with palmierite (K2SO4 · PbSO4). The glaserite (“3 K2SO4 · Na2SO4”) appears as solid solution in the system Na2SO4-K2SO4-H2O. Its solubility and stoichiometry was determined as a function of solution composition.  相似文献   
60.
Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号