首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26830篇
  免费   327篇
  国内免费   947篇
测绘学   1509篇
大气科学   2182篇
地球物理   5083篇
地质学   12460篇
海洋学   1223篇
天文学   2017篇
综合类   2170篇
自然地理   1460篇
  2023年   15篇
  2022年   23篇
  2021年   66篇
  2020年   90篇
  2019年   80篇
  2018年   4809篇
  2017年   4109篇
  2016年   2691篇
  2015年   324篇
  2014年   195篇
  2013年   188篇
  2012年   1110篇
  2011年   2865篇
  2010年   2137篇
  2009年   2439篇
  2008年   2010篇
  2007年   2438篇
  2006年   147篇
  2005年   289篇
  2004年   484篇
  2003年   488篇
  2002年   311篇
  2001年   97篇
  2000年   96篇
  1999年   46篇
  1998年   48篇
  1997年   32篇
  1996年   30篇
  1995年   28篇
  1994年   14篇
  1993年   16篇
  1992年   22篇
  1991年   18篇
  1990年   22篇
  1989年   12篇
  1988年   15篇
  1987年   19篇
  1986年   8篇
  1985年   21篇
  1984年   26篇
  1983年   18篇
  1982年   19篇
  1981年   43篇
  1980年   33篇
  1979年   8篇
  1978年   12篇
  1977年   13篇
  1976年   16篇
  1975年   14篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In the present paper integrated appraisals of landform evolution and their geomorphic features, drainage networks across the upper part of Yamuna river basin have been attempted by using various geomorphic indices such as watershed, drainage density (D), drainage texture, stream-gradient index (SL), hypsometric integral (HI), drainage basin asymmetry (AF), mountain front sinuosity (Smf), sinuosity index (SI), valley floor height and width ratio (Vf) and data of historical earthquakes in characterizing the basin in view of relative index of active tectonics (RIAT) on DEM in geographic information systems (GIS) environment to assess the influence of recent tectonics on geomorphologic growth of the basin.The substantiated RIAT classes through some field observations and corroborated by recent seismicity reveal the recent activation of Yamuna tear faults in the basin with delineation of four RIAT classes such as class-1 (inactive 9.8% of the area), class-2 (low active; 16.40% of the area), class-3 (moderately active; 42.38% of the area) and class-4 (very active; 31.62%). The results suggest that the Himalayan frontal thrust (HFT) and Yamuna tear (YT) located in the basin is morphogenic in nature and got activated several times as evidenced by number of seismic activities in the basin and adjoining regions. The incision, and sharp turning of rivers, crenulations and warping of cross beddings/laminations and silt/clay beds and lenses, megascopic and mesoscopic faulting in sediment sequences suggest a very active nature of the HFT and YT till date in association with three prolific microseismogenic weak zones These active discontinuities appear to support the formation and development of different deformational features in sediment sequences which may be indirectly related to subduction and underthrusting of Indian plate under Eurasian plate below the Himalayan mountain chain.  相似文献   
992.
993.
In the present investigation, an attempt has been made to explore the possibility of hydrocarbon prospects in the carbonaceous shale deposits of Spiti and Chikkim formations exposed in the Spiti valley of the Tethys Himalaya. Twenty samples, collected from successive levels of these litho-units, have been subjected to maceral analysis, Rock-Eval Pyrolysis and six samples to Fourier Transform Infra-red Spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses. The study reveals the presence of mainly kerogen-III type of organic matter but some of the shale samples have shown a good amount of total organic carbon (TOC) to the tune of 3.19% which is sufficient to produce hydrocarbon. The results indicate the presence of methane occurring as free and fixed hydrocarbon in the shale samples. Few levels are especially rich in hydrocarbon. They have shown encouraging results with potential for generating liquid as well as lighter hydrocarbon. The data is also supported by the FTIR and NMR studies.  相似文献   
994.
Flood is among the deadliest disasters in India, and the frequency of floods and extreme precipitation events is projected to increase under the warming climate. The frequency of floods in India varies geographically as some regions are more prone to floods than the others. The Kerala flood of 2018 caused enormous economic damage, affected millions of people, and resulted in the death of more than 400 people. Here we provide a hydroclimatological perspective on the Kerala flood of 2018. Using the observations and model simulations from the Variable Infiltration Capacity (VIC) model, we show that the 2018 extreme precipitation and runoff conditions that caused flooding were unprecedented in the record of the past 66 years (1951–2017). Our results show that mean monsoon precipitation has significantly declined while air temperature has significantly increased during 1951–2017 in Kerala. The drying and warming trends during the monsoon season resulted in a declined total runoff in large part of the state in the last 66 years. Apart from the mean hydroclimatic conditions, extreme precipitation, and extreme total runoff have also declined from 1951 to 2017. However, 1 and 2-day extreme precipitation and extreme runoff conditions in August 2018 exceeded substantially from the long-term 95th percentiles recorded during 1951–2017. Since there is no increase in mean and extreme precipitation in Kerala over the last six decades, the extreme event during August 2018 is likely to be driven by anomalous atmospheric conditions due to climate variability rather anthropogenic climate warming. The severity of the Kerala flood of 2018 and the damage caused might be affected by several factors including land use/land cover change, antecedent hydrologic conditions, reservoir storage and operations, encroachment of flood plains, and other natural factors. The impacts of key drivers (anthropogenic and natural) on flood severity need to be established to improve our understanding of floods and associated damage.  相似文献   
995.
996.
997.
Granitic plutons occurring within and to the west of the Delhi Fold Belt in the Aravalli craton, northwestern India are the result of widespread felsic magmatism during Neoproterozoic, some of which are associated with greisen and skarn tungsten deposits. In this paper, we present the result of our study on fluid inclusions, geochemistry and geochronology of two such tungsten mineralized granite plutons at Degana and Balda, and interpret the nature of ore fluid, and petrogenesis and age of these mineralized granites. Fluid inclusion study reveals coexistence of moderate and hyper-saline aqueous fluid inclusions along with aqueous-carbonic inclusions, suggesting their origin due to liquid immiscibility during fluid–rock interaction. Geochemically, the granites are peraluminous, Rb enriched, Sr and Ba depleted and highly differentiated. The Rb–Sr isotopic systematics yielded \(795\pm 11\) Ma for Balda granite and \(827\pm 8\) Ma for Degana granite. We show that major phase of widespread granitoid magmatism and mineralization during the Neoproterozoic (840–790 Ma) in NW India is coeval with breakup of the Rodinia supercontinent and infer a causal relationship between them.  相似文献   
998.
Palaeobiogeographical distribution of gastropod genera from the Paleocene and the Eocene has been analysed. Based on this distribution, formal palaeobiogeographical provinces have been established and their relationships are sought. It has been found that the provinces were largely restricted to the palaeo-tropics and subtropics mainly of the northern hemisphere and they share a large proportion of their generic composition. The Northern Tropical Realm has been established to include these provinces. The distribution evinces presence of ocean surface currents in the tropics across longitudes. The possible currents moved through the relict Tethys Ocean, across the Atlantic Ocean and perhaps also across the Pacific. However, planktotrophic larvae of these benthic molluscs could not cross the deep ocean barrier that lay between the Northern Tropical Realm and the Austro-New Zealand Province of the southern hemisphere. The gastropod fauna in the latter province evolved independently. Distribution of all the provinces within palaeo-tropics and subtropics indicates strong control of temperature over it. Paleocene–Eocene Thermal Maximum appears to be responsible for extinction and range contraction of high latitude faunas. Low latitude faunas also suffered significant extinction. However, large diversification in the Eocene was a response to widespread transgression that coincided with the thermal event.  相似文献   
999.
The Total Ozone Mapping Spectrometer (TOMS) is a satellite instrument that records Total Column Ozone (TCO) concentration (in DB) of the atmosphere in the form of different overpass files. We have selected 23 sites over India (15), Pakistan (4), Bangladesh (1) and adjoining China (3) to investigate the TCO scenario over this region. About 114,000 historical records (1979M1–1992M12) from 23 overpass files were processed to generate 23 monthly mean time series (TS) of TCO. Statistical analysis followed by singular spectrum analysis (SSA), harmonic regression (HR) and spatial interpolation have been used to accomplish the investigation. Four dominant signals; quasi-biennial signal (QBI, \(\hbox {T} = 30.12\) months), quasi-annual signal (QAN, \(\hbox {T} = 19.69\) months), annual signal (ANN, \(\hbox {T} = 12\) months) and semi-annual signal (SAN, \(\hbox {T} = 6\) months) were discerned to explain the variability. Direct latitudinal effect on the TCO distribution was observed. The variance was limited between 80.53 and 90.13%; ANN contributes 65.93–93.22% followed by SAN 0.58–5.69%, QAN 0.33–5.48%, and QBI 0.06–5.94%. Peak values of the oscillations are estimated from phasor diagrams: QBI, March to May in the mid-latitude; QAN, April, and May; ANN, February to April; SAN, March to May. Incisive pictures of the average distribution and variability of four sinusoids were investigated from contour plots. Two ozone valley were discerned from Spatial interpolation; one over Deccan Plateau in low and other over Tibetan Plateau in high latitude. 179 outliers from \(23 \times 168\) observations have been identified after harmonic regression. The appearance of the outliers is highly consistent with extreme phases of multivariate ENSO Index and Dipole Mode Index.  相似文献   
1000.
The paper examines the quality of Tropical Rainfall Monitoring Mission (TRMM) 3B42 V7 precipitation product to simulate the streamflow using Soil Water Assessment Tool (SWAT) model for various rainfall intensities over the Himalayan region. The SWAT model has been set up for Gandak River Basin with 41 sub-basins and 420 HRUs. Five stream gauge locations are used to simulate the streamflow for a time span of 10 years (2000–2010). Daily streamflow for the simulation period is collected from Central Water Commission (CWC), India and Department of Hydrology and Meteorology (DHM), Nepal. The simulation results are found good in terms of Nash–Sutcliffe efficiency \((\hbox {NSE}) {>}0.65\), coefficient of determination \((R^{2}) {>}0.67\) and Percentage Bias \(\hbox {(PBIAS)}{<}15\%\), at each stream gauge sites. Thereafter, we have calculated the PBIAS and RMSE-observations standard deviation ratio (RSR) statistics between TRMM simulated and observed streamflow for various rainfall intensity classes, viz., light (\({<}7.5 \, \hbox {mm}/\hbox {d}\)), moderate (7.5 to 35.4 mm/d), heavy (35.5 to 124.4 mm/d) and extremely heavy (\({>}124.4 \, \hbox {mm}/\hbox {d}\)). The PBIAS and RSR show that TRMM simulated streamflow is suitable for moderate to heavy rainfall intensities. However, it does not perform well for light- and extremely-heavy rainfall intensities. The finding of the present work is useful for the problems related to water resources management, irrigation planning and hazard analysis over the Himalayan regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号