首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   17篇
  国内免费   3篇
测绘学   6篇
大气科学   37篇
地球物理   134篇
地质学   133篇
海洋学   32篇
天文学   94篇
自然地理   33篇
  2024年   3篇
  2021年   10篇
  2020年   8篇
  2019年   9篇
  2018年   10篇
  2017年   7篇
  2016年   14篇
  2015年   8篇
  2014年   8篇
  2013年   28篇
  2012年   4篇
  2011年   15篇
  2010年   18篇
  2009年   20篇
  2008年   17篇
  2007年   20篇
  2006年   15篇
  2005年   19篇
  2004年   12篇
  2003年   18篇
  2002年   18篇
  2001年   9篇
  2000年   12篇
  1999年   7篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   9篇
  1977年   10篇
  1975年   4篇
  1974年   10篇
  1973年   12篇
  1972年   3篇
  1971年   3篇
排序方式: 共有469条查询结果,搜索用时 0 毫秒
361.
362.
We present here a revised reconstruction of the Ross ice drainage system of Antarctica at the last glacial maximum (LGM) based on a recent convergence of terrestrial and marine data. The Ross drainage system includes all ice flowlines that enter the marine Ross Embayment. Today, it encompasses one-fourth of the ice-sheet surface, extending far inland into both East and West Antarctica. Grounding lines now situated in the inner Ross Embayment advanced seaward at the LGM (radiocarbon chronology in Denton and Marchant 2000 and in Hall and Denton 2000a, b), resulting in a thick grounded ice sheet across the Ross continental shelf. In response to this grounding in the Ross (and Weddell) Embayment, ice-surface elevations of the marine-based West Antarctic Ice Sheet were somewhat higher at the LGM than at present (Steig and White 1997; Borns et al. 1998; Ackert et al. 1999). At the same time, surface elevations of the East Antarctic Ice Sheet inland of the Transantarctic Mountains were slightly lower than now, except near outlet glaciers that were dammed by grounded ice in the Ross Embayment. The probable reason for this contrasting behavior is that lowered global sea level at the LGM, from growth of Northern Hemisphere ice sheets, caused widespread grounding of the marine portion of the Antarctic Ice Sheet, whereas decreased LGM accumulation led to slight surface lowering of the interior terrestrial ice sheet in East Antarctica. Rising sea level after the LGM tripped grounding-line recession in the Ross Embayment, which has probably continued to the present day (Conway et al. 1999). Hence, gravitational collapse of the grounded ice sheet from the Ross Embayment, accompanied by lowering of the interior West Antarctic ice surface and of outlet glaciers in the Transantarctic Mountains, occurred largely during the Holocene. At the same time, increased Holocene accumulation caused a slight rise of the inland East Antarctic ice surface.  相似文献   
363.
The orientation of several landforms, e.g. drumlins, flutes, crag-and-tails, and mega-scale glacial lineations, records the direction of the overlying ice flow that created them. Populations of such features are used routinely to infer former ice-flow patterns, which serve as the building blocks of reconstructions of palaeo ice-sheet evolution. Currently, the conceptualisation of flow patterns from these flow-direction records is done manually and qualitatively, so the extractable glaciological information is limited. We describe a kriging method (with Matlab code implementation) that calculates continuous fields of ice-flow direction, convergence, and curvature from the flow-direction records, and which yields quantitative results with uncertainty estimates. We test the method by application to the subglacial bedforms of the Tweed Valley Basin, UK. The results quantify the convergent flow pattern of the Tweed Palaeo-Ice Stream in detail and pinpoint its former lateral shear margins and where ice flowed around basal bumps. Ice-flow parameters retrieved by this method can enrich ice-sheet reconstructions and investigations of subglacial till processes and bedform genesis. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
364.
We examine the climatological diurnal cycle of surface air temperature in a 6 km resolution atmospheric simulation of Southern California from 1995 to the present. We find its amplitude and phase both have significant geographical structure. This is most likely due to diurnally-varying flows back and forth across the coastline and elevation isolines resulting from the large daily warming and cooling over land. Because the region’s atmosphere is generally stably stratified, these flow patterns result in air of lower (higher) potential temperature being advected upslope (downslope) during daytime (nighttime). This suppresses the temperature diurnal cycle amplitude at mountaintops where diurnal flows converge (diverge) during the day (night). The nighttime land breeze also advects air of higher potential temperature downslope toward the coast. This raises minimum temperatures in land areas adjacent to the coast in a manner analogous to the daytime suppression of maximum temperature by the cool sea breeze in these same areas. Because stratification is greater in the coastal zone than in the desert interior, these thermal effects of the diurnal winds are not uniform, generating spatial structures in the phase and shape of the temperature diurnal cycle as well as its amplitude. We confirm that the simulated characteristics of the temperature diurnal cycle as well as those of the associated diurnal winds are also found in a network of 30 observation stations in the region. This gives confidence in the simulation’s realism and our study’s findings. Diurnal flows are probably mainly responsible for the geographical structures in the temperature diurnal cycle in other regions of significant topography and surface heterogeneity, their importance depending partly on the degree of atmospheric stratification.  相似文献   
365.
366.
A simple expansion technique is developed for predicting the response of a horizontally sheared oceanic coastal flow over uniform coastal topography to variations in that bottom topography. The technique is illustrated by application to supercritical and subcritical flows. The response of the supercritical flow is local, while that of the subcritical flow extends downstream to be eventually attenuated by frictional damping. However, the response of both flow types is weak unless the flow is nearly critical.  相似文献   
367.
368.
Submarine turbidity currents are one of the most important processes for moving sediment across our planet; they are hazardous to offshore infrastructure, deposit petroleum reservoirs worldwide, and may record tsunamigenic landslides. However, there are few studies that have monitored these submarine flows in action, and even fewer studies that have combined direct monitoring with longer‐term records from core and seismic data of deposits. This article provides one of the most complete studies yet of a turbidity current system. The aim here is to understand what controls changes in flow frequency and character along the turbidite system. The study area is a 12 km long delta‐fed fjord (Howe Sound) in British Columbia, Canada. Over 100 often powerful (up to 2 to 3 m sec?1) events occur each year in the highly‐active proximal channels, which extend for 1 to 2 km from the delta lip. About half of these events reach the lobes at the channel mouths. However, flow frequency decreases rapidly once these initially sand‐rich flows become unconfined, and only one to five flows run out across the mid‐slope each year. Many of these sand‐rich, channelized, delta‐sourced flows therefore dissipated over a few hundred metres, once unconfined, rather than eroding and igniting. Upflow migrating bedforms indicate that supercritical flow dominated in the proximal channels and lobes, and also across the unconfined mid‐slope. These supercritical flows deposited thick sand beds in proximal channels and lobes, but thinner and finer beds on the unconfined mid‐slope. The distal flat basin records far larger volume and more hazardous events that have a recurrence interval of ca 100 years. This study shows how sand‐rich delta‐fed flows dissipate rapidly once they become unconfined, that supercritical flows dominate in both confined and unconfined settings, and how a second type of more hazardous, and much less frequent event is linked to a different scale of margin failure.  相似文献   
369.
Many published interpretations of ancient fluvial systems have relied on observations of extensive outcrops of thick successions. This paper, in contrast, demonstrates that a regional understanding of palaeoriver kinematics, depositional setting and sedimentation rates can be interpreted from local sedimentological measurements of bedform and barform strata. Dune and bar strata, channel planform geometry and bed topography are measured within exhumed fluvial strata exposed as ridges in the Ruby Ranch Member of the Cretaceous Cedar Mountain Formation, Utah, USA. The ridges are composed of lithified stacked channel belts, representing at least five or six re-occupations of a single-strand channel. Lateral sections reveal well-preserved barforms constructed of subaqueous dune cross-sets. The topography of palaeobarforms is preserved along the top surface of the outcrops. Comparisons of the channel-belt centreline to local palaeotransport directions indicate that channel planform geometry was preserved through the re-occupations, rather than being obscured by lateral migration. Rapid avulsions preserved the state of the active channel bed and its individual bars at the time of abandonment. Inferred minimum sedimentation durations for the preserved elements, inferred from cross-set thickness distributions and assumed bedform migration rates, vary within a belt from one to ten days. Using only these local sedimentological measurements, the depositional setting is interpreted as a fluvial megafan, given the similarity in river kinematics. This paper provides a systematic methodology for the future synthesis of vertical and planview data, including the drone-equipped 2020 Mars Rover mission, to exhumed fluvial and deltaic strata.  相似文献   
370.
It is well established that anthropogenic nutrient inputs harm estuarine seagrasses, but the influence of nutrients in rocky intertidal ecosystems is less clear. In this study, we investigated the effect of anthropogenic nutrient loading on Phyllospadix spp., a rocky intertidal seagrass, at local and regional scales. At sites along California, Washington, and Oregon, we demonstrated a significant, negative correlation of urban development and Phyllospadix bed thickness. These results were echoed locally along an urban gradient on the central California coast, where Phyllospadix shoot δ15N was negatively associated with Phyllospadix bed thickness, and experimentally, where nutrient additions in mesocosms reduced Phyllospadix shoot formation and increased epiphytic cover on Phyllospadix shoots. These findings provide evidence that coastal development can threaten rocky intertidal seagrasses through increased epiphytism. Considering that seagrasses provide vital ecosystem services, mitigating eutrophication and other factors associated with development in the rocky intertidal coastal zone should be a management priority.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号