首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
测绘学   5篇
地球物理   14篇
地质学   47篇
海洋学   2篇
天文学   16篇
自然地理   4篇
  2019年   4篇
  2017年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
排序方式: 共有88条查询结果,搜索用时 62 毫秒
81.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   
82.
Aeromagnetic data collected in areas with severe diurnal magnetic variations (auroral zones) are difficult to level. This paper describes levelling of an aeromagnetic survey where such conditions prevail, and where sophisticated levelling techniques are needed. Corrections based on piecewise low‐order polynomial functions are often used to minimize mis‐ties in aeromagnetic data. We review this technique and describe similar mis‐tie fitting methods based on low‐pass filter levelling, tensioned B‐spline levelling and median levelling. It is demonstrated that polynomial levelling, low‐pass filter levelling and tensioned B‐spline levelling depend on the careful editing of outlying mis‐ties to avoid the introduction of false anomalies. These three techniques are equally efficient at removing level errors. Median levelling also removes level errors efficiently, but it is more robust in the sense that mis‐tie editing is not required. This is due to the inherent noise‐removal capabilities of the median filter. After mis‐tie editing, the total field anomalies of the other three techniques closely resemble the unedited median‐levelled total field anomaly.  相似文献   
83.
ULTRACAM: an ultrafast, triple-beam CCD camera for high-speed astrophysics   总被引:1,自引:0,他引:1  
ULTRACAM is a portable, high-speed imaging photometer designed to study faint astronomical objects at high temporal resolutions. ULTRACAM employs two dichroic beamsplitters and three frame-transfer CCD cameras to provide three-colour optical imaging at frame rates of up to 500 Hz. The instrument has been mounted on both the 4.2-m William Herschel Telescope on La Palma and the 8.2-m Very Large Telescope in Chile, and has been used to study white dwarfs, brown dwarfs, pulsars, black hole/neutron star X-ray binaries, gamma-ray bursts, cataclysmic variables, eclipsing binary stars, extrasolar planets, flare stars, ultracompact binaries, active galactic nuclei, asteroseismology and occultations by Solar System objects (Titan, Pluto and Kuiper Belt objects). In this paper we describe the scientific motivation behind ULTRACAM, present an outline of its design and report on its measured performance.  相似文献   
84.
Li  Weiqiang  Li  Shilei  Beard  Brian L. 《中国地球化学学报》2019,38(4):508-516

Shales are a major sink for K into seawater delivered from continental weathering, and are potential recorders of K cycling. High precision K isotope analyses reveal a > 0.6 ‰ variation in δ41K values (41K/39K relative to NIST SRM 3141a) from a set of well characterized post-Archean Australian shale (PAAS) samples. By contrast, loess samples have relatively homogenous δ41K values (− 0.5 ± 0.1 ‰), which may represent the average K composition of upper continental crust. Most of the shales analyzed in this study have experienced K enrichment relative to average continental crust, and the majority of them define a trend of decreasing δ41K value (from − 0.5 to − 0.7 ‰) with increasing K content and K/Na ratio, indicating cation exchange in clays minerals is accompanied by K isotope fractionation. Several shale samples do not follow the trend and have elevated δ41K values up to − 0.1 ‰, and these samples are characterized by variable Fe isotope compositions, which reflect post-depositional processes. The K isotope variability observed in shales, in combination with recent findings about K isotope fractionation during continental weathering, indicates that K isotopes fractionate during cycling of K between different reservoirs, and K isotopes in sediments may be used to trace geological cycling of K.

  相似文献   
85.
Meteor radars located in Bulgaria and the UK have been used to simultaneously measure winds in the mesosphere/lower-thermosphere region near 42.5°N, 26.6°E and 54.5°N, 3.9°W, respectively, over the period January 1991 to June 1992. The data have been used to investigate planetary waves and diurnal and semidiurnal tidal variability over the two sites. The tidal amplitudes at each site exhibit fluctuations as large as 300% on time scales from a few days to the intra-seasonal, with most of the variability being at intra-seasonal scales. Spectral and cross-wavelet analysis reveals closely related tidal variability over the two sites, indicating that the variability occurs on spatial scales large compared to the spacing between the two radars. In some, but not all, cases, periodic variability of tidal amplitudes is associated with simultaneously present planetary waves of similar period, suggesting the variability is a consequence of non-linear interaction. Calculation of the zonal wave number of a number of large amplitude planetary waves suggests that during summer 1991 the 2-day wave had a zonal wave number of 3, but that during January/February 1991 it had a zonal wave number of 4.  相似文献   
86.
Igneous rocks of the Devonian Kola Alkaline Carbonatite Province (KACP) in NW Russia and eastern Finland can be classified into four groups: (a) primitive mantle-derived silica-undersaturated silicate magmas; (b) evolved alkaline and nepheline syenites; (c) cumulate rocks; (d) carbonatites and phoscorites, some of which may also be cumulates. There is no obvious age difference between these various groups, so all of the magma-types were formed at the same time in a relatively restricted area and must therefore be petrogenetically related. Both sodic and potassic varieties of primitive silicate magmas are present. On major element variation diagrams, the cumulate rocks plot as simple mixtures of their constituent minerals (olivine, clinopyroxene, calcite, etc). There are complete compositional trends between carbonatites, phoscorites and silicate cumulates, which suggests that many carbonatites and phoscorites are also cumulates. CaO / Al2O3 ratios for ultramafic and mafic silicate rocks in dykes and pipes range up to 5, indicating a very small degree of melting of a carbonated mantle at depth. Damkjernites appear to be transitional to carbonatites. Trace element modelling indicates that all the mafic silicate magmas are related to small degrees of melting of a metasomatised garnet peridotite source. Similarities of the REE patterns and initial Sr and Nd isotope compositions for ultramafic alkaline silicate rocks and carbonatites indicate that there is a strong relationship between the two magma-types. There is also a strong petrogenetic link between carbonatites, kimberlites and alkaline ultramafic lamprophyres. Fractional crystallisation of olivine, diopside, melilite and nepheline gave rise to the evolved nepheline syenites, and formed the ultramafic cumulates. All magmas in the KACP appear to have originated in a single event, possibly triggered by the arrival of hot material (mantle plume?) beneath the Archaean/Proterozoic lithosphere of the northern Baltic Shield that had been recently metasomatised. Melting of the carbonated garnet peridotite mantle formed a spectrum of magmas including carbonatite, damkjernite, melilitite, melanephelinite and ultramafic lamprophyre. Pockets of phlogopite metasomatised lithospheric mantle also melted to form potassic magmas including kimberlite. Depth of melting, degree of melting and presence of metasomatic phases are probably the major factors controlling the precise composition of the primary melts formed.  相似文献   
87.
We use a combination of 2D and 3D petrographic examination and 40Ar‐39Ar analyses to examine the impact histories of a suite of seven ordinary chondrites (Baszkówka, Miller, NWA 2380, Mount Tazerzait, Sahara 98034, Tjerebon, and MIL 99301) that partially preserve their ancient, but postaccretionary, porosity ranging from 10 to 20%. We examine whether materials that seem to be only mildly processed (as their large intergranular pore spaces suggest) may have more complex shock histories. The ages determined for most of the seven OCs studied here indicate closure of the 40Ar‐39Ar system after primary accretion, but during (Baszkówka) or shortly after (others) thermal metamorphism, with little subsequent heating. Exceptions include Sahara 98034 and MIL 99301, which were heated to some degree at later stages, but retain some evidence for the timing of thermal metamorphism in the 40Ar‐39Ar system. Although each of these chondrites has olivine grains with sharp optical extinction (signaling an apparent shock stage of S1), normally indicative of an extremely mild impact history, all of the samples contain relict shock indicators. Given the high porosity and relatively low degree of compaction coupled with signs of shock and thermal annealing, it seems plausible that impacts into materials that were already hot may have produced the relict shock indicators. Initial heating could have resulted from prior collisions, the decay of 26Al, or both processes.  相似文献   
88.
The influence of ablation cell geometry (Frames single‐ and HelEx two‐volume cells) and laser wavelength (198 and 266 nm) on aerosols produced by femtosecond laser ablation (fs‐LA) were evaluated. Morphologies, iron mass distribution (IMD) and 56Fe/54Fe ratios of particles generated from magnetite, pyrite, haematite and siderite were studied. The following two morphologies were identified: spherules (10–200 nm) and agglomerates (5–10 nm). Similarity in IMD and ablation rate at 198 and 266 nm indicates similar ablation mechanisms. 56Fe/54Fe ratios increased with aerodynamic particle size as a result of kinetic fractionation during laser plasma plume expansion, cooling and aerosol condensation. The HelEx cell produces smaller particles with a larger range of 56Fe/54Fe ratios (1.85‰) than particles from the Frames cell (1.16‰), but the bulk aerosol matches the bulk substrate for both cells, demonstrating stoichiometric fs‐LA sampling. IMD differences are the result of faster wash out of the HelEx cell allowing less time for agglomeration of small, low‐δ 56Fe particles with larger, high‐δ 56Fe particles in the cell. Even with a shorter ablation time, half the total Fe ion intensity, and half the ablation volume, the HelEx cell produced Fe isotope determinations for magnetite that were as precise as the Frames cell, even when the latter included an aerosol‐homogenising mixing chamber. The HelEx cell delivered a more constant stream of small particles to the ICP, producing a more stable Fe ion signal (0.7% vs. 1.5% RSE for 56Fe in a forty‐cycle single analysis), constant instrumental mass bias and thus a more precise measurement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号