首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95460篇
  免费   1632篇
  国内免费   693篇
测绘学   2389篇
大气科学   7224篇
地球物理   19471篇
地质学   31970篇
海洋学   8518篇
天文学   21428篇
综合类   212篇
自然地理   6573篇
  2021年   710篇
  2020年   872篇
  2019年   874篇
  2018年   1696篇
  2017年   1612篇
  2016年   2201篇
  2015年   1449篇
  2014年   2174篇
  2013年   4739篇
  2012年   2336篇
  2011年   3425篇
  2010年   3044篇
  2009年   4270篇
  2008年   3778篇
  2007年   3607篇
  2006年   3502篇
  2005年   2986篇
  2004年   3031篇
  2003年   2858篇
  2002年   2758篇
  2001年   2437篇
  2000年   2364篇
  1999年   2008篇
  1998年   2018篇
  1997年   2000篇
  1996年   1738篇
  1995年   1648篇
  1994年   1496篇
  1993年   1366篇
  1992年   1303篇
  1991年   1154篇
  1990年   1356篇
  1989年   1194篇
  1988年   1101篇
  1987年   1296篇
  1986年   1181篇
  1985年   1437篇
  1984年   1626篇
  1983年   1523篇
  1982年   1404篇
  1981年   1397篇
  1980年   1172篇
  1979年   1150篇
  1978年   1165篇
  1977年   1099篇
  1976年   1009篇
  1975年   963篇
  1974年   962篇
  1973年   975篇
  1972年   600篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
The dynamics of photoevaporated molecular clouds is determined by the ablative pressure acting on the ionization front. An important step in the understanding of the ensuing motion is to develop the linear stability theory for an initially flat front. Despite the simplifications introduced by linearization, the problem remains quite complex and still draws a lot of attention. The complexity is related to the large number of effects that have to be included in the analysis: acceleration of the front, possible temporal variation of the intensity of the ionizing radiation, the tilt of the radiation flux with respect to the normal to the surface, and partial absorption of the incident radiation in the ablated material. In this paper, we describe a model where all these effects can be taken into account simultaneously, and a relatively simple and universal dispersion relation can be obtained. The proposed phenomenological model may prove to be a helpful tool in assessing the feasibility of the laboratory experiments directed towards scaled modeling of astrophysical phenomena. PACS Numbers: 98.38.Dq, 98.38.Hv, 52.38.Mf, 5257.FG, 52.72.+v  相似文献   
954.
Bianchi type-IX space-time is considered in the presence of cosmic string source in the frame work of a scalar- tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. A 113:467, 1985). Exact cosmological models representing geometric (Nambu) string, p string and baratropic string are discussed in this theory. Some physical and kinematical properties of the models are also studied.  相似文献   
955.
We present numerical simulations of kinetic Alfvén waves (KAWs) and inertial Alfvén waves (IAWs) applicable to the solar wind, the solar corona, and the auroral regions, respectively, leading to the formation of coherent magnetic structures when the nonlinearity arises from ponderomotive effects and Joule heating. The nonlinear dynamical equation satisfies the modified nonlinear Schrödinger equation. The effect of nonlinear coupling between the main KAW/IAW and the perturbation, producing filamentary structures of the magnetic field, has been studied. Scalings in the spectral index of the power spectrum at different times have been calculated. These filamentary structures can act as a source for particle acceleration by wave?–?particle interaction because the KAWs/IAWs are mixed modes and Landau damping is possible.  相似文献   
956.
Radio observational results at 232 MHz and multifrequency studies of supernova remnant (SNR) HB21 are presented. Its integrated flux density at 232 MHz is about 390 ± 30 Jy. Both the integrated spectral index and the spatial variations of spectral index of the remnant were calculated by combining the new map at 232 MHz with previously published maps made at 408, 1420, 2695, and 4750 MHz. The SNR has an integrated spectral index of about α = -0.43(S ν ∝ να) between 232 and 4750 MHz. In general the spectral index varies from –0.5 in southeast and west regions of the remnant to –0.3 in the central region and near the northwest edge. The new data of 232 MHz reveals that there is interaction between the remnant and the surrounding gas along the east edge of the remnant which causes the spectrum flattening at low frequency, while the very good agreement between the structure of X-ray emission and the central flat spectrum area suggests that the existence of thermal emission is the reason of spectrum flattening in the area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
957.
958.
959.
HESS J1616−508 is one of the brightest emitters in the TeV sky. Recent observations with the IBIS/ISGRI telescope onboard the INTEGRAL spacecraft have revealed that a young, nearby and energetic pulsar, PSR J1617−5055, is a powerful emitter of soft γ-rays in the 20–100 keV domain. In this paper, we present an analysis of all available data from the INTEGRAL , Swift , BeppoSAX and XMM–Newton telescopes with a view to assessing the most likely counterpart to the High Energy Stereoscopic System (HESS) source. We find that the energy source that fuels the X/γ-ray emissions is derived from the pulsar, both on the basis of the positional morphology, the timing evidence and the energetics of the system. Likewise the 1.2 per cent of the pulsar's spin-down energy loss needed to power the 0.1–10 TeV emission is also fully consistent with other HESS sources known to be associated with pulsars. The relative sizes of the X/γ-ray and very high energy sources are consistent with the expected lifetimes against synchrotron and Compton losses for a single source of parent electrons emitted from the pulsar. We find that no other known object in the vicinity could be reasonably considered as a plausible counterpart to the HESS source. We conclude that there is good evidence to assume that the HESS J1616−508 source is driven by PSR J1617−5055 in which a combination of synchrotron and inverse-Compton processes combine to create the observed morphology of a broad-band emitter from keV to TeV energies.  相似文献   
960.
Short time‐scale radio variations of compact extragalactic radio quasars and blazars known as IntraDay Variability (IDV) can be explained in at least some sources as a propagation effect; the variations are interpreted as scintillation of radio waves in the turbulent interstellar medium of the Milky Way. One of the most convincing observational arguments in favor of a propagation‐induced variability scenario is the observed annual modulation in the characteristic time scale of the variation due to the Earth's orbital motion. So far there are only two sources known with a well‐constrained seasonal cycle. Annual modulation has been proposed for a few other less well‐documented objects. However, for some other IDV sources source‐intrinsic structural variations which cause drastic changes in the variability time scale were also suggested. J1128+592 is a recently discovered, highly variable IDV source. Previous, densely time‐sampled flux‐density measurements with the Effelsberg 100‐m radio telescope (Germany) and the Urumqi 25‐m radio telescope (China), strongly indicate an annual modulation of the time scale. The most recent 4 observations in 2006/7, however, do not fit well to the annual modulation model proposed before. In this paper, we investigate a possible explanation of this discrepancy. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号