Assessment of sand encroachment in Kuwait using Geographical Information System (GIS) technology has been formulated as a
Multi-Criteria Decision Making problem. The Delphi method and Analytical Hierarchy Process were adopted as evaluating techniques,
in which experts’ judgments were analyzed for objectively estimating and weighting control factors. Seven triggering factors,
depicted in the form of maps, were identified and ordered according to their priority. These factors are (1) wind energy;
(2) surface sediment; (3) vegetation density; (4) land use; (5) drainage density; (6) topographic change and (7) vegetation
type. The factor maps were digitized, converted to raster data and overlaid to determine their possible spatial relationships.
Applying a susceptibility model, a map of sand encroachment susceptibility in Kuwait was developed. The map showed that the
areas of very high and high sand encroachment susceptibility are located within the main corridor of sand pathway that coincides
with the northwesterly dominant wind direction. 相似文献
Sandwiched between the Adriatic Carbonate Platform and the Dinaride Ophiolite Zone, the Bosnian Flysch forms a c. 3000 m thick, intensely folded stack of Upper Jurassic to Cretaceous mixed carbonate and siliciclastic sediments in the Dinarides. New petrographic, heavy mineral, zircon U/Pb and fission-track data as well as biostratigraphic evidence allow us to reconstruct the palaeogeology of the source areas of the Bosnian Flysch basin in late Mesozoic times. Middle Jurassic intraoceanic subduction of the Neotethys was shortly followed by exhumation of the overriding oceanic plate. Trench sedimentation was controlled by a dual sediment supply from the sub-ophiolitic high-grade metamorphic soles and from the distal continental margin of the Adriatic plate. Following obduction onto Adria, from the Jurassic–Cretaceous transition onwards a vast clastic wedge (Vranduk Formation) was developed in front of the leading edge, fed by continental basement units of Adria that experienced Early Cretaceous synsedimentary cooling, by the overlying ophiolitic thrust sheets and by redeposited elements of coeval Urgonian facies reefs grown on the thrust wedge complex. Following mid-Cretaceous deformation and thermal overprint of the Vranduk Formation, the depozone migrated further towards SW and received increasing amounts of redeposited carbonate detritus released from the Adriatic Carbonate Platform margin (Ugar Formation). Subordinate siliciclastic source components indicate changing source rocks on the upper plate, with ophiolites becoming subordinate. The zone of the continental basement previously affected by the Late Jurassic–Early Cretaceous thermal imprint has been removed; instead, the basement mostly supplied detritus with a wide range of pre-Jurassic cooling ages. However, a c. 80 Ma, largely synsedimentary cooling event is also recorded by the Ugar Formation, that contrasts the predominantly Early Cretaceous cooling of the Adriatic basement and suggests, at least locally, a fast exhumation. 相似文献
Upper Permian to Lower Triassic coastal plain successions of the Sydney Basin in eastern Australia have been investigated in outcrop and continuous drillcores. The purpose of the investigation is to provide an assessment of palaeoenvironmental change at high southern palaeolatitudes in a continental margin context for the late Permian (Lopingian), across the end‐Permian Extinction interval, and into the Early Triassic. These basins were affected by explosive volcanic eruptions during the late Permian and, to a much lesser extent, during the Early Triassic, allowing high‐resolution age determination on the numerous tuff horizons. Palaeobotanical and radiogenic isotope data indicate that the end‐Permian Extinction occurs at the top of the uppermost coal bed, and the Permo‐Triassic boundary either within an immediately overlying mudrock succession or within a succeeding channel sandstone body, depending on locality due to lateral variation. Late Permian depositional environments were initially (during the Wuchiapingian) shallow marine and deltaic, but coastal plain fluvial environments with extensive coal‐forming mires became progressively established during the early late Permian, reflected in numerous preserved coal seams. The fluvial style of coastal plain channel deposits varies geographically. However, apart from the loss of peat‐forming mires, no significant long‐term change in depositional style (grain size, sediment‐body architecture, or sediment dispersal direction) was noted across the end‐Permian Extinction (pinpointed by turnover of the palaeoflora). There is no evidence for immediate aridification across the boundary despite a loss of coal from these successions. Rather, the end‐Permian Extinction marks the base of a long‐term, progressive trend towards better‐drained alluvial conditions into the Early Triassic. Indeed, the floral turnover was immediately followed by a flooding event in basinal depocentres, following which fluvial systems similar to those active prior to the end‐Permian Extinction were re‐established. The age of the floral extinction is constrained to 252.54 ± 0.08 to 252.10 ± 0.06 Ma by a suite of new Chemical Abrasion Isotope Dilution Thermal Ionization Mass Spectrometry U‐Pb ages on zircon grains. Another new age indicates that the return to fluvial sedimentation similar to that before the end‐Permian Extinction occurred in the basal Triassic (prior to 251.51 ± 0.14 Ma). The character of the surface separating coal‐bearing pre‐end‐Permian Extinction from coal‐barren post‐end‐Permian Extinction strata varies across the basins. In basin‐central locations, the contact varies from disconformable, where a fluvial channel body has cut down to the level of the top coal, to conformable where the top coal is overlain by mudrocks and interbedded sandstone–siltstone facies. In basin‐marginal locations, however, the contact is a pronounced erosional disconformity with coarse‐grained alluvial facies overlying older Permian rocks. There is no evidence that the contact is everywhere a disconformity or unconformity. 相似文献
In the proposed approach, the well-known enhanced Lee filter is modified to allow the integration of feature outlines-previously extracted from segmented optical images. The filter is applied to several ENVISAT ASAR images that cover urban, agricultural, and forest areas during different plant phenological stages. The performance of this segment-based speckle filter is compared to those of other filters using ratio images, visual interpretation, and statistical indexes. The approach reduces the loss of radiometry and spatial information. It performs comparable to more complex methods and outperforms common techniques 相似文献
The EC-funded STRATAGEM project ran from 2000 to 2003 and was a study of the Neogene evolution of the glaciated northeast Atlantic margin from Lofoten to Porcupine, an area extending over nearly 20 degrees of latitude. An extensive seismic, borehole and sample database has been used, much of it supplied by the oil industry. The main products of STRATAGEM have been an integrated, unified stratigraphic framework in the form of an atlas documenting and illustrating the detailed stratigraphy of the entire margin, and a detailed evolution model for this margin. A brief summary of the background to, and organisation of, the project is presented, together with an outline of the main objectives, the physiographic setting of the area and the database. 相似文献
Sedimentary material from coastal and nearshore areas in the Mississippi Delta region are comprised of different organic carbon sources with diverse ages that require isotopic and elemental records for resolving the various sources of plant residues. Carbon isotopic ((13)C, (14)C) values were used to differentiate contributions from plants using the C3, C4, and/or CAM (crassulacean acid metabolism) carbon fixation pathways., and iodine concentrations indicated that wetland plant residues are a significant source of organic carbon in a sediment core from the Mississippi River delta region collected at a 60 m water depth. This sediment core had been extensively described in Oktay et al. [Oktay, S.D., Santschi, P.H., Moran, J.E., Sharma, P., 2000. The (129)Iodine Bomb Pulse Recorded in Mississippi River delta Sediments: Results from Isotopes of I, Pu, Cs, Pb, and C. Geochim. Cosmochim. Acta 64 (6), 989-996.] and significantly, includes unique features that had not previously been seen in the marine environment. These special features include a plutonium isotopic close-in fallout record that indicates a purely terrestrial source for these sediment particles and the elements associated with it, and a distinct iodine isotopic peak (as well as peaks for plutonium and cesium isotopes) that indicate little bioturbation in this core. Our carbon isotopic and iodine data can thus be compared to published records of changes in drainage basin land use, river hydrology, and hydrodynamic sorting of suspended particles to elucidate if these changes are reflected in nearshore sediments. This comparison suggests a significant contribution for organic carbon (OC) from C4 plants to these sediments during the 1950's to early 1960's. Relative older carbon isotopes, and episodically high iodine concentrations (up to 34 ppm) were observed during this time period that (1) indicate sediment deposition that is coincident with the times of major hydrological changes induced from dam and levee building in both the upper and lower reaches of the Mississippi River drainage basin, and (2) suggest episodic organic carbon deposition from wetland plant residues. 相似文献
The enrichment of marine particles with selenium cannot be explained as that with metals present in cationic form by complexation with anionic functional groups of adsorbed organic matter. Physicochemical data obtained using a model system are reported. The surface of the particles is modelized by a mercury electrode whose surface charge density can be easily changed, covered by a layer of adsorbed polymers. Studies with different kinds of macromolecules and salts show a specific interaction between adsorbed polyalanine and selenite. The results can be explained by the concordance of the distances between two oxygen atoms in this oxyanion and between two amine groups of the adsorbed polypeptide. A similar mechanism could occur in marine aggregates whatever their nature, as long as they contain amine groups at their surface which result in this concordance. Some prospects derived from the results are discussed. 相似文献
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).
The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.
The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland. 相似文献