首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
大气科学   5篇
地球物理   9篇
地质学   13篇
天文学   23篇
自然地理   1篇
  2024年   1篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.
Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo77-73); Type-II inclusions occur in phenocryst mantles (Fo71-66); Type-III inclusions occur in phenocryst rims (Fo61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (∼150-250 μm diameter) to Type-II (∼100 μm diameter) to Type-III (∼25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (∼10 wt%). This is consistent with a calculation indicating that ∼10 wt% magnesian (Fo77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo77. Thus, two independent estimates indicate that LAR 06319 contains ∼10 wt% cumulate olivine.The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of the LAR 06319 whole-rock. The REE patterns of Type-II and Type-III melt inclusions are also broadly parallel to that of the whole-rock, but at higher absolute abundances. These results are consistent with an LAR 06319 parent magma that crystallized as a closed-system, with its incompatible-element enrichment being inherited from its mantle source region. However, fractional crystallization of the reconstructed LAR 06319 parent magma cannot reproduce the major and trace element characteristics of all enriched basaltic shergottites, indicating local-to-large scale major- and trace-element variations in the mantle source of enriched shergottites. Therefore, LAR 06319 cannot be parental to the enriched basaltic shergottites.  相似文献   
42.
43.
Abstract— We examine the occurrences, textures, and compositional patterns of spinels in the olivine‐phyric shergottites Sayh al Uhaymir (SaU) 005, lithology A of Elephant Moraine A79001 (EET‐A), Dhofar 019, and Northwest Africa (NWA) 1110, as well as the Iherzolitic shergottite Allan Hills (ALH) A77005, in order to identify spinel‐olivine‐pyroxene assemblages for the determination of oxygen fugacity (using the oxybarometer of Wood [1991]) at several stages of crystallization. In all of these basaltic martian rocks, chromite was the earliest phase and crystallized along a trend of strict Cr‐Al variation. Spinel (chromite) crystallization was terminated by the appearance of pyroxene but resumed later with the appearance of ulvöspinel. Ulvöspinel formed overgrowths on early chromites (except those shielded as inclusions in olivine or pyroxene), retaining the evidence of the spinel stability gap in the form of a sharp core/rim boundary (except in ALH A77005, where subsolidus reequilibration diffused this boundary). Secondary effects seen in chromites include reaction with melt before ulvöspinel overgrowth, reaction with melt inclusions, reaction with olivine hosts (in ALH A77005), and exsolution of ulvöspinel or ilmenite. All chromites experienced subsolidus Fe/Mg reequilibration. Spinel‐olivine‐pyroxene assemblages representing the earliest stages of crystallization in each rock essentially consist of the highest‐Cr#, lowest‐fe# chromites not showing secondary effects plus the most magnesian olivine and equilibrium low‐Ca pyroxene. Assemblages representing the onset of ulvöspinel crystallization consist of the lowest‐Ti ulvöspinel, the most magnesian olivine in which ulvöspinel occurs as inclusions, and equilibrium low‐Ca pyroxene. The results show that, for early crystallization conditions, oxygen fugacity (fO2) increases from SaU 005 and Dhofar 019 (?QFM ‐3.8), to EET‐A (QFM ‐2.8) and ALH A77005 (QFM ‐2.6), to NWA 1110 (QFM ‐1.7). Estimates for later conditions indicate that in SaU 005 and Dhofar 019 oxidation state did not change during crystallization. In EET‐A, there was an increase in fO2 that may have been due to mixing of reduced material with a more oxidized magma. In NWA 1110, there was a dramatic increase, indicating a non‐buffered system, possibly related to its high oxidation state. Differences in fO2 among shergottites are not primarily due to igneous fractionation but, rather, to derivation from (and possibly mixing of) different reservoirs.  相似文献   
44.
Abstract— The outer portions of many type I chondrules (Fa and Fs <5 mol%) in CR chondrites (except Renazzo and Al Rais) consist of silica‐rich igneous rims (SIRs). The host chondrules are often layered and have a porphyritic core surrounded by a coarse‐grained igneous rim rich in low‐Ca pyroxene. The SIRs are sulfide‐free and consist of igneously‐zoned low‐Ca and high‐Ca pyroxenes, glassy mesostasis, Fe, Ni‐metal nodules, and a nearly pure SiO2 phase. The high‐Ca pyroxenes in these rims are enriched in Cr (up to 3.5 wt% Cr2O3) and Mn (up to 4.4 wt% MnO) and depleted in Al and Ti relative to those in the host chondrules, and contain detectable Na (up to 0.2 wt% Na2O). Mesostases show systematic compositional variations: Si, Na, K, and Mn contents increase, whereas Ca, Mg, Al, and Cr contents decrease from chondrule core, through pyroxene‐rich igneous rim (PIR), and to SIR; FeO content remains nearly constant. Glass melt inclusions in olivine phenocrysts in the chondrule cores have high Ca and Al, and low Si, with Na, K, and Mn contents that are below electron microprobe detection limits. Fe, Ni‐metal grains in SIRs are depleted in Ni and Co relative to those in the host chondrules. The presence of sulfide‐free, SIRs around sulfide‐free type I chondrules in CR chondrites may indicate that these chondrules formed at high (>800 K) ambient nebular temperatures and escaped remelting at lower ambient temperatures. We suggest that these rims formed either by gas‐solid condensation of silica‐normative materials onto chondrule surfaces and subsequent incomplete melting, or by direct SiO(gas) condensation into chondrule melts. In either case, the condensation occurred from a fractionated, nebular gas enriched in Si, Na, K, Mn, and Cr relative to Mg. The fractionation of these lithophile elements could be due to isolation (in the chondrules) of the higher temperature condensates from reaction with the nebular gas or to evaporation‐recondensation of these elements during chondrule formation. These mechanisms and the observed increase in pyroxene/olivine ratio toward the peripheries of most type I chondrules in CR, CV, and ordinary chondrites may explain the origin of olivine‐rich and pyroxene‐rich chondrules in general.  相似文献   
45.
Melt inclusions in ureilites occur only in the small augite- and orthopyroxene-bearing subgroups. Previously [Goodrich C.A., Fioretti A.M., Tribaudino M. and Molin G. (2001) Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009. Geochim. Cosmochim. Acta65, 621-652] we described melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009 (Hughes). FRO 90054/93008 (FRO) is a near-twin of Hughes, and has abundant melt inclusions in all three primary silicates. We use these inclusions to reconstruct the major, minor and rare earth element composition of the Hughes/FRO parent magma and evaluate models for the petrogenesis of augite-bearing ureilites.Hughes and FRO consist of 23-47 vol % olivine (Fo 87.3 and 87.6, respectively), 7-52 vol % augite (mg 89.2, Wo 37.0 and mg 88.8, Wo 38.0, respectively), and 12-56 vol % orthopyroxene (mg 88.3, Wo 4.9 and mg 88.0, Wo 4.8, respectively). They have coarse-grained (?3 mm), highly-equilibrated textures, with poikilitic relationships indicating the crystallization sequence olivine → augite → orthopyroxene. FRO is more shocked than Hughes, experienced greater secondary reduction, and is more weathered. The two meteorites are probably derived from the same lithologic unit.Melt inclusions in olivine consist of glass ± daughter cpx ± metal-sulfide-phosphide spherules ± chromite, and have completely reequilibrated Fe/Mg with their hosts. We follow the method of Goodrich et al. (2001) for reconstructing the composition of the primary trapped liquid they represent (olPTL), but correct an error in our treatment of the effects of reequilibration. Inclusions in augite consist of glass, which shows only partial reequilibration of Fe/Mg. The composition of the primary trapped liquid they represent (augPTL) is reconstructed by reverse fractional crystallization of wall augite from the most ferroan glass. Inclusions in orthopyroxene consist of glass + 30-50 vol % daughter cpx. The cpx shows complete, but the glass only partial, reequilibration of Fe/Mg. A range of possible compositions for the primary trapped liquid they represent (opxPTL) is calculated by modal recombination of glass and cpx, followed by addition of wall orthopyroxene and adjustment of Fe/Mg for equilibrium with the primary orthopyroxene. Only a small subset of these compositions is plausible on the basis of being orthopyroxene-saturated.Results indicate that olPTL, assumed to represent the parent magma of these rocks, was saturated only with olivine and in equilibrium with Fo ∼ 83. AugPTL and opxPTL are very similar in composition; both are close to augite + orthopyroxene co-saturation and in equilibrium with Fo 87/8. We suggest that olPTL was reduced to Fo 87/8 due to smelting during ascent, and show that this produces a composition very similar to that of augPTL and opxPTL.REE data for each of the three primary silicates and the least evolved melt inclusions in olivine are used to calculate REE abundances in the Hughes/FRO parent magma. All four methods yield very similar results, indicating a REE pattern that is strongly LREE-depleted (Sm/La = 3.3-3.7), with a small negative Eu anomaly (Eu/Eu* = 0.82) and slight HREE-depletion (Gd/Lu = 1.4-1.6).The Hughes/FRO parent magma provides a robust constraint on models for the petrogenesis of augite-bearing ureilites. Its major, minor and rare earth element composition suggests derivation through mixing and/or assimilation processes, rather than as a primary melt on the ureilite parent body.  相似文献   
46.
From differential tracking techniques, required for appulse observations of KBOs with Laser Guide Star Adaptive Optics (LGSAO), to developing methods for collecting spectra at the precise moment of a predicted impact, each Solar System observation conducted on a large telescope presents a unique set of challenges. We present operational details and some key science results from our science program, adaptive optics observations of main belt asteroids and near earth objects; as well as the technical and operational details of several Keck Solar System observations conducted by other teams: the impact of Shoemaker-Levy 9 on Jupiter, volcanoes on Io, the Deep Impact mission to Comet 9P/Tempel 1, and recent observations of Pluto’s moons Nix and Hydra. For each of these observations, we draw from our Keck experience to predict what challenges may lie ahead when similar observations are conducted on next generation telescopes.  相似文献   
47.
Martian meteorites Sayh al Uhaymir (SaU) 005 and lithology A of EETA79001 (EET-A) belong to a newly emerging group of olivine-phyric shergottites. Previous models for the origin of such shergottites have focused on mixing between basaltic shergottite-like magmas and lherzolitic shergottite-like material. Results of this work, however, suggest that SaU 005 and EET-A formed from olivine-saturated magmas that may have been parental to basaltic shergottites.SaU 005 and EET-A have porphyritic textures of large (up to ∼3 mm) olivine crystals (∼25% in SaU 005; ∼13% in EET-A) in finer-grained groundmasses consisting principally of pigeonite (∼50% in SaU 005; ∼60% in EET-A), plagioclase (maskelynite) and < 7% augite. Low-Ti chromite occurs as inclusions in the more magnesian olivine, and with chromian ulvöspinel rims in the more ferroan olivine and the groundmass. Crystallization histories for both rocks were determined from petrographic features (textures, crystal shapes and size distributions, phase associations, and modal abundances), mineral compositions, and melt compositions reconstructed from magmatic inclusions in olivine and chromite. The following observations indicate that the chromite and most magnesian olivine (Fo 74-70 in SaU 005; Fo 81-77 in EET-A) and pyroxenes (low-Ca pyroxene [Wo 4-6] of mg 77-74 and augite of mg 78 in SaU 005; orthopyroxene [Wo 3-5] of mg 84-80 in EET-A) in these rocks are xenocrystic. (1) Olivine crystal size distribution (CSD) functions show excesses of the largest crystals (whose cores comprise the most magnesian compositions), indicating addition of phenocrysts or xenocrysts. (2) The most magnesian low-Ca pyroxenes show near-vertical trends of mg vs. Al2O3 and Cr2O3, which suggest reaction with a magma. (3) In SaU 005, there is a gap in augite composition between mg 78 and 73. (4) Chromite cores of composite spinel grains are riddled with cracks, indicating that they experienced some physical stress before being overgrown with ulvöspinel. (5) Magmatic inclusions are absent in the most magnesian olivine, but abundant in the more ferroan, indicating slower growth rates for the former. (6) The predicted early crystallization sequence of the melt trapped in chromite (the earliest phase) in each rock produces its most magnesian olivine-pyroxene assemblage. However, in neither case is the total crystallization sequence of this melt consistent with the overall crystallization history of the rock or its bulk modal mineralogy.Further, the following observations indicate that in both SaU 005 and EET-A the fraction of solid xenocrystic or xenolithic material is small (in contrast to previous models for EET-A), and most of the material in the rock formed by continuous crystallization of a single magma (possibly mixed). (1) CSD functions and correlations of crystal size with composition show that most of the olivine (Fo 69-62 in SaU 005; Fo 76-53 in EET-A) formed by continuous nucleation and growth. (2) Groundmass pigeonites are in equilibrium with this olivine, and show continuous compositional trends that are typical for basalts. (3) The CSD function for groundmass pigeonite in EET-A indicates continuous nucleation and growth (Lentz and McSween, 2000). (4) The melt trapped in olivine of Fo 76 to 67 in EET-A has a predicted crystallization sequence similar to that inferred for most of the rock and produces an assemblage similar to its modal mineralogy. (5) Melt trapped in late olivine (Fo ∼ 64) in SaU 005 has a composition consistent with the inferred late crystallization history of the rock.The conclusion that only a small fraction of either SaU 005 or EET-A is xenocrystic or xenolithic implies that both rocks lost fractionated liquids in the late stages of crystallization. This is supported by: (1) high pigeonite/plagioclase ratios; (2) low augite contents; and (3) olivine CSD functions, which show a drop in nucleation rate at high degrees of crystallization, consistent with loss of liquid. For EET-A, this fractionated liquid may be represented by EET-B.  相似文献   
48.
It has been observed that storms in early fall can result in top-to-bottom mixing of Chesapeake Bay. A three-dimensional, time-dependent circulation model is used to examine this destratification process for September 1983, when extensive current and hydrographic data were available. The model bay is forced at the surface by observed hourly winds, at the ocean boundary by observed hourly surface and bottom salinities and sea level fluctuations, and at the head by observed daily discharges for a 28-d period. A second-moment, turbulence-closure submodel, with no adjustments from previous applications to its requisite coefficients, is used to calculate the vertical turbulence mixing coefficients. Comparisons with data inside the model domain indicate relative errors of 7% to 14% for sea level, 7% to 35% for current, and 11% to 21% for salinity. The tidal portion of the spectrum is modeled better than the subtidal portion. The model is used to examine both the mechanisms of wind mixing and the temporal and spatial distribution of vertical mixing within the estuary. Wind-driven internal shear is shown to be a more effective mechanism of inducing destratification than turbulence generated at the surface. The model is also used to show that the vertical temperature inversion which occurs in the fall does not affect the timing of the destratification as much as its completeness. The distribution of mid-depth vertical mixing shows highly variable values in the mid-bay region, where wind-induced mixing is dominant. This suggests that the source of oxygen to mid-bay bottom waters is similarly variable. Vertical turbulence mixing coefficients of 10?2 cm2 s?1 (background) to 103 cm2 s?1 were needed to simulate the September period, indicating the need for time-variable mixing in models of dissolved and suspended estuarine constituents.  相似文献   
49.
50.
Abstract— Calculations performed using MAGPOX show that no bulk compositions having chondritic Ca/Al ratio and within the range of chondritic Si/Mg ratios can produce the olivine-pigeonite ureilites (which constitute 65% of those for which modal abundances are known) as residues of single-stage equilibrium partial melting. Calcium/aluminum ratios of 2–3.5 × CI are required. In addition, all the ureilites could not have formed from a single composition at various degrees of reduction, because they show no correlation between pigeonite/olivine ratio and mg ratio. Materials with various Al/Mg ratios, ranging from subchondritic to superchondritic, are required. If these materials are primitive (i.e., created by nebular processes rather than planetary igneous processes), they are unknown in the meteorite record. Excess accretion (relative to chondrites) of 5–10 mol% of a high-temperature condensate component, which was itself almost completely depleted in corundum due to early fractionation, could create the necessary compositions. The plausibility that such processes occurred on a parent-body sized scale is difficult to assess. In contrast, lodranites can be produced as residues of ~3–30% equilibrium partial melting of an average ordinary chondritic composition at the appropriate level of reduction. Although many features of ureilites suggest that they are relatively primitive residues produced by low degrees of melting of chondritic materials, and thus resemble lodranites and other groups of primitive achondrites, their predominantly pigeonite + olivine mineralogy remains difficult to explain within this simple scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号