首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
大气科学   5篇
地球物理   9篇
地质学   13篇
天文学   23篇
自然地理   1篇
  2024年   1篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
21.
There have been many studies of hydrologic processes and scale. However, some researchers have found that predictions from hydrologic models may not be improved by attempting to incorporate the understanding of these processes into hydrologic models. This paper quantifies the effect of simplifying watershed geometry and averaging the parameter values on simulations generated using the KINEROS2 model. Furthermore, it examines how these changes in model input effect model output. The model was applied on a small semiarid rangeland watershed in which runoff is generated by the infiltration excess mechanism. The study concludes that averaging input parameter values has little effect on runoff volume and peak in simulating runoff. However, geometric simplification does have an effect on runoff peak and volume, but it is not statistically significant. In contrast, both averaging input parameter values and geometric simplification have an effect on model‐predicted sediment yield. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
22.
Hydrological impacts from climate change are of principal interest to water resource policy-makers and practicing engineers. Predictive climatic models have been extensively investigated to quantify the impacts. Palaeoclmatic investigations, on the other hand, show unequivocal and strong periodicity of climate variations in proxy evidence. Yet how to use the periodicity in future hydroclimatic timing and forecasting has received less attention. This paper examines the periodicity in Pleistocene–Holocene glacial–interglacial events and in modern precipitation records, and discusses a way in which the periodicity is used for hydroclimatic predictions. The analysis, based on published CO2, ΔT2H) and δ18O proxy data of polar ice cores and deep oceanic benthic fossils, shows a periodicity in a ~100, ~40 or 25 kyear duration consistent with Milankovitch orbital regulations during the glacial–interglacial periods. On a fine time scale, millennium and multi-decadal periodicity is observed in high-resolution proxy variations of Greenland ice cores and in instrumental precipitation records of the contiguous USA. A basic periodicity of decadal and multi-decadal changes in ~20 and ~10–15 year duration is apparent in wavelet frequency analysis of both ice core proxy and precipitation data. While the kyear-scale periodicity is found of global prevalence, the millennium and decadal variations vary in space and are region-specific. Based on these findings, a generalized time-downscaling hierarchy of periodicity is proposed as a potential approach for timing and forecasting future hydroclimatic conditions at a resolution relevant to the water resources engineering and management.  相似文献   
23.
Abstract– The Northwest Africa (NWA) 1500 meteorite is an olivine‐rich achondrite containing approximately 2–3 vol% augite, 1–2 vol% plagioclase, 1 vol% chromite, and minor orthopyroxene, Cl‐apatite, metal and sulfide. It was originally classified as a ureilite, but is currently ungrouped. We re‐examined the oxygen three‐isotope composition of NWA 1500. Results of ultra‐high precision (~0.03‰ for Δ17O) laser fluorination analyses of two bulk chips, and high precision (~0.3‰) secondary ion mass spectrometry (SIMS) analyses of olivine and plagioclase in a thin section, show that the oxygen isotope composition of NWA 1500 (Δ17O = ?0.22‰ from bulk samples and ?0.18 ± 0.06‰ from 16 mineral analyses) is within the range of brachinites. We compare petrologic and geochemical characteristics of NWA 1500 with those of brachinites and other olivine‐rich primitive achondrites, including new petrographic, mineral compositional and bulk compositional data for brachinites Hughes 026, Reid 013, NWA 5191, NWA 595, and Brachina. Modal mineral abundances, texture, olivine and pyroxene major and minor element compositions, plagioclase major element compositions, rare earth element abundances, and siderophile element abundances of NWA 1500 are within the range of those in brachinites and, in most cases, well distinguished from those of winonaites/IAB silicates, acapulcoites/lodranites, ureilites, and Divnoe. NWA 1500 shows evidence of internal reduction, in the form of reversely zoned olivine (Fo ~65–73 core to rim) and fine‐grained intergrowths of orthopyroxene + metal along olivine grain margins. The latter also occur in Reid 013, Hughes 026, NWA 5191, and NWA 595. We argue that reduction (olivine→enstatite + Fe0 + O2) is the best hypothesis for their origin in these samples as well. We suggest that NWA 1500 should be classified as a brachinite, which has implications for the petrogenesis of brachinites. Fe‐Mn‐Mg compositions of brachinite olivine provide evidence of redox processes among bulk samples. NWA 1500 provides evidence for redox processes on a smaller scale as well, which supports the interpretation that these processes occurred in a parent body setting. SIMS data for 26Al‐26Mg isotopes in plagioclase in NWA 1500 show no 26Mg excesses beyond analytical uncertainties (1–2‰). The calculated upper limit for the initial 26Al/27Al ratio of the plagioclase corresponds to an age younger than 7 Ma after CAI. Compared to 53Mn‐53Cr data for Brachina ( Wadhwa et al. 1998b ), this implies either a much younger formation age or a more protracted cooling history. However, Brachina is atypical and this comparison may not extend to other brachinites.  相似文献   
24.
Abstract— Ureilites are coarse-grained ultramafic rocks whose petrography, mineral chemistry, lithophile element bulk chemistry, and Sm-Nd isotopic systematics suggest that they are highly fractionated igneous rocks and thus are products of common planetary differentiation processes. However, they also have primitive characteristics that are difficult to reconcile with extensive igneous processing. These include high abundances of siderophile elements, planetary-type noble gases, and the oxygen isotopic signature of unequilibrated solar system materials. The incongruity between igneous and primitive features constitutes the most important problem in understanding ureilite petrogenesis. In this review the petrographic, chemical, and isotopic characteristics of ureilites are summarized, and the petrogenetic implications of these characteristics are discussed. The most important constraints on ureilite petrogenesis are: 1) Ureilites have lost a basaltic complement; 2) Ureilites had a two-stage cooling history; 3) Ureilites are probably residues but partly crystallized from melts; 4) Ureilites are derived from a minimum of six reservoirs which were distinct in oxygen isotopic composition and did not equilibrate with one another; 5) A correlation between oxygen isotopic composition and mg ratio was established in ureilite parent material in the solar nebula; 6) If carbon-metal-silicate-CO/CO2 equilibrium was maintained then the mg ratios of ureilites were pressure/depth-dependent; however, if the pressure was sufficiently high (> 100–200 bars) that a CO/CO2 gas phase was not present then carbon and metal could have been at equilibrium with all ureilite mg ratios at the same pressure; 7) Ureilites either lost a low-melting temperature metal fraction or gained a refractory-rich metal component; 8) Primordial noble gases were retained in carbon in ureilites; 9) The ultramafic ureilite assemblage formed at ~4.55 Ga, but Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Recently proposed models for ureilite petrogenesis are evaluated in terms of how well they satisfy these constraints; no models unequivocally satisfy all of them. Reconciling constraints 5 and 6 requires a large ureilite parent body.  相似文献   
25.
Ureilites are carbon‐rich ultramafic (olivine + dominantly low‐Ca pyroxene) achondrites with poorly understood petrogenesis. One major problem concerns the origin of extensive variation in FeO content (olivine core Fo values ranging from approximately 75 to 95) among the individual ureilites. The two main competing hypotheses to explain this variation are: (1) equilibrium smelting, in which ureilite Fo values were established by pressure‐dependent (depth‐linked) carbon redox reactions on the ureilite parent body during partial melting; or (2) nebular inheritance, in which the variation in FeO contents was derived from ureilite precursors and was preserved during partial melting. The paper “Parent body depth‐pressure‐temperature relationships and the style of the ureilite anatexis” by Warren (2012) discusses a series of topics related to ureilite petrogenesis. In each case, an argument is presented within the context of smelting versus nonsmelting models. Collectively, these arguments create the impression that there are many valid arguments against smelting. The purpose of this comment is to point out flaws in some of these arguments, and/or to show that the issues they address are independent of smelting versus nonsmelting models. Both equilibrium smelting and nebular inheritance (simple anatexis) models face challenges in explaining all the properties of ureilites, but both remain viable.  相似文献   
26.
Traditional Boussinesq or kinematic simulations of interflow (i.e., lateral subsurface flow) assume no leakage through the impeding layer and require a no-flow boundary condition at the ridge top. However, recent analyses of many interflow-producing landscapes indicate that leaky impeding layers are common, that most interflow percolates well before reaching the toe slope, and therefore, the downslope contributing length is shorter than the hillslope length. In watersheds characterised by perched interflow over a low conductivity layer through permeable topsoil, interflow with percolation may be modelled with a kinematic wave model using a mobile upslope boundary condition defining the hillslope portion contributing interflow to valleys. Here, we developed and applied a dynamic interflow model to simulate interflow using a downslope travel distance concept such that only the active contributing length is modelled at any time. The model defines a variable active area based on the depth of the perched layer, the topographic slope and the ratio of the hydraulic conductivity of topsoil to that of the impeding layer. It incorporates a two-layer soil moisture accounting water balance analysis, a pedo-transfer function, and percolation and evaporation routines to predict interflow rates in continuous and event-based scenarios. We tested the modelling concept on two sets of data (2-year dataset of rainfall observations for the continuous simulation and a multi-day irrigation experiment for the event simulation) from a 121-m-long open interflow collection trench on an experimental hillslope at the Savannah River Site, South Carolina. The continuous model simulation partially represented the observed interflow hydrograph and perched water depth in the experimental hillslope with correlation coefficients of 0.85 and 0.35, respectively. Model performance improved significantly at event-scale analysis. The modelling approach realistically represents interflow dynamics in hillslopes with leaky impeding layers and can be integrated into catchment-scale hydrology models for more detailed hillslope process modelling.  相似文献   
27.
This paper reviews regional climate knowledge and vulnerability in the northern Mexico San Pedro River Basin, with a focus on water quality, quantity, and management issues on the Mexican side of the border. A discussion based on the available literature is supplemented by a survey assessing concerns about water and the quality and usability of climate and hydrologic information available to water managers and communities. The surveys indicate that the central concern for urban residents is the lack of reliable potable water due to frequent service breakdowns–with climate change and variability, specifically drought and high temperatures, as contributing factors. Water managers desire appropriate meteorological and hydrologic information to improve planning strategies, but access to this information remains limited. Considerable disagreement exists about who should pay for previously free or low-cost water and wastewater treatment. Urban users have little incentive to conserve because of the present flat, low rate and frustration with service. In rural areas, while a majority of ranchers recognize that variable climate and water loss could increasingly jeopardize their lifestyle, they seldom use meteorological information in planning or modify their water consumption. Climate vulnerability also includes potential for serious environmental health issues due to the presence of heavy metals and organic contaminants in the San Pedro.  相似文献   
28.
Almahata Sitta (AhS), an anomalous polymict ureilite, is the first meteorite observed to originate from a spectrally classified asteroid (2008 TC3). However, correlating properties of the meteorite with those of the asteroid is not straightforward because the AhS stones are diverse types. Of those studied prior to this work, 70–80% are ureilites (achondrites) and 20–30% are various types of chondrites. Asteroid 2008 TC3 was a heterogeneous breccia that disintegrated in the atmosphere, with its clasts landing on Earth as individual stones and most of its mass lost. We describe AhS 91A and AhS 671, which are the first AhS stones to show contacts between ureilitic and chondritic materials and provide direct information about the structure and composition of asteroid 2008 TC3. AhS 91A and AhS 671 are friable breccias, consisting of a C1 lithology that encloses rounded to angular clasts (<10 μm to 3 mm) of olivine, pyroxenes, plagioclase, graphite, and metal‐sulfide, as well as chondrules (~130–600 μm) and chondrule fragments. The C1 material consists of fine‐grained phyllosilicates (serpentine and saponite) and amorphous material, magnetite, breunnerite, dolomite, fayalitic olivine (Fo 28‐42), an unidentified Ca‐rich silicate phase, Fe,Ni sulfides, and minor Ca‐phosphate and ilmenite. It has similarities to CI1 but shows evidence of heterogeneous thermal metamorphism. Its bulk oxygen isotope composition (δ18O = 13.53‰, δ17O = 8.93‰) is unlike that of any known chondrite, but similar to compositions of several CC‐like clasts in typical polymict ureilites. Its Cr isotope composition is unlike that of any known meteorite. The enclosed clasts and chondrules do not belong to the C1 lithology. The olivine (Fo 75‐88), pyroxenes (pigeonite of Wo ~10 and orthopyroxene of Wo ~4.6), plagioclase, graphite, and some metal‐sulfide are ureilitic, based on mineral compositions, textures, and oxygen isotope compositions, and represent at least six distinct ureilitic lithologies. The chondrules are probably derived from type 3 OC and/or CC, based on mineral and oxygen isotope compositions. Some of the metal‐sulfide clasts are derived from EC. AhS 91A and AhS 671 are plausible representatives of the bulk of the asteroid that was lost. Reflectance spectra of AhS 91A are dark (reflectance ~0.04–0.05) and relatively featureless in VNIR, and have an ~2.7 μm absorption band due to OH? in phyllosilicates. Spectral modeling, using mixtures of laboratory VNIR reflectance spectra of AhS stones to fit the F‐type spectrum of the asteroid, suggests that 2008 TC3 consisted mainly of ureilitic and AhS 91A‐like materials, with as much as 40–70% of the latter, and <10% of OC, EC, and other meteorite types. The bulk density of AhS 91A (2.35 ± 0.05 g cm?3) is lower than bulk densities of other AhS stones, and closer to estimates for the asteroid (~1.7–2.2 g cm?3). Its porosity (36%) is near the low end of estimates for the asteroid (33–50%), suggesting significant macroporosity. The textures of AhS 91A and AhS 671 (finely comminuted clasts of disparate materials intimately mixed) support formation of 2008 TC3 in a regolith environment. AhS 91A and AhS 671 could represent a volume of regolith formed when a CC‐like body impacted into already well‐gardened ureilitic + impactor‐derived debris. AhS 91A bulk samples do not show a solar wind component, so they represent subsurface layers. AhS 91A has a lower cosmic ray exposure (CRE) age (~5–9 Ma) than previously studied AhS stones (11–22 Ma). The spread in CRE ages argues for irradiation in a regolith environment. AhS 91A and AhS 671 show that ureilitic asteroids could have detectable ~2.7 μm absorption bands.  相似文献   
29.
Abstract— Queen Alexandra Range (QUE) 93148 is a small (1.1 g) olivine‐rich achondrite (mg 86) that contains variable amounts of orthopyroxene (mg 87) and kamacite (6.7 wt% Ni), with minor augite. Olivine in QUE 93148 contains an unusual suite of inclusions: (1) 5 × 100 μm sized lamellae with a CaO‐ and Cr2O3‐rich (~10 and 22 wt%, respectively) composition that may represent a submicrometer‐scale intergrowth of chromite and pyroxene(s); (2) 75 × 500 μm sized lamellar symplectites composed of chromite and two pyroxenes, with minor metal; (3) 15–20 μm sized, irregularly‐shaped symplectites composed of chromite and pyroxene(s); (4) 100–150 μm sized, elliptical inclusions composed of chromite, two pyroxenes, metal, troilite, and rare whitlockite. Type 1, 2, and 3 inclusions probably formed by exsolution from the host olivine during slow cooling, whereas type 4 more likely resulted from early entrapment of silicate and metallic melts followed by closed‐system oxidation. Queen Alexandra Range 93148 can be distinguished from most other olivine‐rich achondrites (ureilites, winonaites, lodranites, acapulcoites, brachinites, Eagle‐Station‐type pallasites, and pyroxene pallasites), as well as from mesosiderites, by some or all of the following properties: O‐isotopic composition, Fe‐Mn‐Mg relations of olivine, CaO and Cr2O3 contents of olivine, orthopyroxene compositions, molar Cr/(Cr + Al) ratios of chromite, metal composition, texture, and the presence of the inclusions. In terms of many of these properties, it shows an affinity to main‐group pallasites. Nevertheless, it cannot be identified as belonging to this group. Meteorite QUE 93148 appears to be a unique achondrite. Possibly it should be considered to be a pyroxene pallasite that is genetically related to main‐group pallasites. Alternatively, it may be derived from the mantle of the pallasite (howardite‐eucrite‐diogenite?) parent body.  相似文献   
30.
We used new analytical and theoretical methods to determine the major and minor element compositions of the primary trapped liquid (PTLs) represented by melt inclusions in olivine and augite in the Martian clinopyroxenite, Nakhla, for comparison with previously proposed compositions for the Nakhla (or nakhlite) parent magma. We particularly focused on obtaining accurate K2O contents, and on testing whether high K2O contents and K2O/Na2O ratios obtained in previous studies of melt inclusions in olivine in Nakhla could have been due to unrepresentative sampling, systematic errors arising from electron microprobe techniques, late alteration of the inclusions, and/or boundary layer effects. Based on analyses of 35 melt inclusions in olivine cores, the PTL in olivine, PTLoliv, contained (by wt) approximately 47% SiO2, 6.3% Al2O3, 9.6% CaO, 1.8% K2O, and 0.9% Na2O, with K2O/Na2O = 2.0. We infer that the high K2O content of PTLoliv is not due to boundary layer effects and represents a real property of the melt from which the host olivine crystallized. This melt was cosaturated with olivine and augite. Its mg# is model‐dependent and is constrained only to be ≥19 (equilibrium Fo = 40). Based on analyses of 91 melt inclusions in augite cores, the PTL in augite, PTLaug, contained (by wt) 53–54% SiO2, 7–8% Al2O3, 0.8–1.1% K2O, and 1.1–1.4% Na2O, with K2O/Na2O = 0.7–0.8. This K2O content and K2O/Na2O ratio are significantly higher than inferred in studies of melt inclusions in augite in Nakhla by experimental rehomogenization. PTLaug was saturated only with augite, and in equilibrium with augite cores of mg# 62. PTLaug represents the Nakhla parent magma, and does not evolve to PTLoliv by fractional crystallization. We therefore conclude that olivine cores in Nakhla (and, by extension, other nakhlites) are xenocrystic. We propose that PTLoliv and PTLaug were generated from the same source region. PTLoliv was generated first and emplaced to form olivine‐rich cumulate rocks. Shortly thereafter, PTLaug was generated and ascended through these olivine‐rich cumulates, incorporating fragments of wallrock that became the xenocrystic olivine cores in Nakhla. The Nakhla (nakhlite) mantle source region was pyroxenitic with some olivine, and could have become enriched in K relative to Na via metasomatism. A high degree of melting of this source produced the silica‐poor, alkali‐rich magma PTLoliv. Further ascension and decompression of the source led to generation of the silica‐rich, relatively alkali‐poor magma PTLaug. Potassium‐rich magmas like those involved in the formation of the nakhlites represent an important part of the diversity of Martian igneous rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号