首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   5篇
  国内免费   1篇
测绘学   10篇
大气科学   22篇
地球物理   49篇
地质学   120篇
海洋学   21篇
天文学   42篇
综合类   1篇
自然地理   23篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   20篇
  2012年   9篇
  2011年   11篇
  2010年   14篇
  2009年   16篇
  2008年   16篇
  2007年   18篇
  2006年   12篇
  2005年   13篇
  2004年   9篇
  2003年   10篇
  2002年   15篇
  2001年   7篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
排序方式: 共有288条查询结果,搜索用时 15 毫秒
131.
In 2002, the Florida Department of Environmental Protection began discharging phosphate-processing effluent into Bishop Harbor, an estuary within Tampa Bay. Because of concerns that the effluent would serve as a nutrient source for blooms of the toxic dinoflagellate Karenia brevis, a field monitoring program was established and laboratory bioassays were conducted. Several harmful algal bloom (HAB) species, including Prorocentrum minimum and Heterosigma akashiwo, were observed in bloom concentrations adjacent to the effluent discharge site. Blooms of diatoms were widespread throughout Bishop Harbor. K. brevis was observed with cell concentrations decreasing with increasing proximity to the effluent discharge site. Bioassays using effluent as a nutrient source for K. brevis resulted in decreased cell yields, increased growth rates, and increased time to log-phase growth. The responses of HAB species within Bishop Harbor and of K. brevis to effluent in bioassays suggested that HAB species differ in their response to phosphate-processing effluent.  相似文献   
132.
South-East Greenland forms part of the North Atlantic Craton and is characterized by migmatitic orthogneisses, narrow bands of mafic granulite, ultramafic and possible meta-sedimentary rocks, and alkaline-carbonatitic intrusive rocks. Mafic granulite, meta-sedimentary and ultramafic rocks form the basement for the emplacement of granitic intrusions at ca. 2865 Ma that lasted episodically until ca. 2790 Ma and continuously during 2750–2700 Ma. The area is structurally complex with evidence of at least seven deformation events including reclined and mushroom-like fold interference patterns. An older (> 2790 Ma) foliation formed in granitic rocks and the basement during the Timmiarmiut Orogeny (DT). Deformation associated with the ca. 2790–2700 Ma Skjoldungen Orogeny folded this early foliation, and is associated with a penetrative foliation that is refolded progressively in a northeast–southwest oriented stress field. The orientation of the stress field progressively rotated into a northnorthwest–southsoutheast orientation during the last stages of the orogeny. The orogeny is also characterized by syn-deformational anatexis at granulite-facies (at approximately 800 °C and 5–8 kbar, ca. 2790–2740 Ma), which decreased to the amphibolite-facies at ca. 2730 Ma.The late- to post-tectonic granite and alkaline rocks assigned to the Skjoldungen Alkaline Province intruded the central-northern part around 2710 Ma. This was followed by north–south extensional deformation during the Singertat Stage forming discrete shear-zones at greenschist-facies grades, which is coeval with the emplacement of pegmatite, ijolite, and carbonatite emplacement during ca. 2680–2650 Ma.Similar lithology and tectonic processes in the Tasiusarsuaq Terrane of southern West Greenland and the Lewisian Complex in Scotland suggest a possibly large Archaean terrane at that time, which, taking the present size, at least covered around 500–600 km in an east–west direction and approximately 200 km in a north–south direction.  相似文献   
133.
The Southeastern portion of the East African Rift System reactivates Mesozoic transform faults marking the separation of Madagascar from Africa in the Western Indian Ocean. Earlier studies noted the reactivation of the Davie Fracture Zone in oceanic lithosphere as a seismically active extensional fault, and new 3D seismic reflection data and exploration wells provide unprecedented detail on the kinematics of the sub-parallel Seagap fault zone in continental/transitional crust landward of the ocean-continent transition. We reconstruct the evolution of the seismically active Seagap fault zone, a 400-km-long crustal structure affecting the Tanzania margin, from the late Eocene to the present day. The Seagap fault zone is represented by large-scale localized structures affecting the seafloor and displaying growth geometries across most of the Miocene sediments. The continuous tectonic activity evident by our seismic mapping, as well as 2D deep seismic data from literature, suggests that from the Middle-Late Jurassic until 125 Ma, the Seagap fault acted as a regional structure parallel to, and coeval with, the dextral Davie Fracture Zone. The Seagap fault then remained active after the cessation of both seafloor spreading in the Somali basin and strike-slip activity on the Davie Fracture Zone, till nowaday. Its architecture is structurally expressed through the sequence of releasing and restraining bends dating back at least to the early Neogene. Seismic sections and horizon maps indicate that those restraining bends are generated by strike-slip reactivation of Cretaceous structures till the Miocene. Finally based on the interpretation of edge-enhanced reflection seismic surfaces and seafloor data, we shows that, by the late Neogene, the Seagap fault zone switched to normal fault behaviour. We discuss the Seagap fault's geological and kinematic significance through time and its current role within the microplate system in the framework of the East African rift, as well as implications for the evolution and re-activation of structures along sheared margins. The newly integrated datasets reveal the polyphase deformation of this margin, highlighting its complex evolution and the implications for depositional fairways and structural trap and seal changes through time, as well as potential hazards.  相似文献   
134.
The article describes methodology of space monitoring of the existing landscapes as it is practised in the CIS (former USSR). Different points of mew are presented concerning environmental monitoring as well as the aspects of its practical organization. The objectives of automation of the ecological data acquisition, storage and processing are also dealt with; necessity of geographic information systems creation is substantiated. Experience gained in the operation of geoinformation systems is considered with plans on geo‐information base development for the needs of geographical and ecological studies of the CIS landscapes. Practical experience with case studies on identifying and mapping the ecological disaster zones is described in the Aral Sea basin and the Kyzyl Kum desert.  相似文献   
135.
136.
137.
The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz–sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet–clinopyroxene–K-feldspar–quartz. The quartz–sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite–quartz alteration in the biotite schist, (2) a garnet–clinopyroxene–K-feldspar–quartz alteration in the marble and calc-silicate rock, and (3) a garnet–biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite–quartz– and garnet–clinopyroxene–K-feldspar–quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet–biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid–rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
138.
Orogenic collapse involves extension and thinning of thick and hot (partially molten) crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. Two-dimensional thermo-mechanical Ellipsis models evaluate the parameters that likely control the formation and evolution of MCC: the nature and geometry of the heterogeneity that localizes MCC, the presence/absence of a partially molten layer in the lower crust, and the rate of extension. When the localizing heterogeneity is a normal fault in the upper crust, the migmatite core remains in the footwall of the fault, resulting in an asymmetric MCC; if the localizing heterogeneity is point like region within the upper crust, the MCC remains symmetric throughout its development. Therefore, asymmetrically located migmatite domes likely reflect the dip of the original normal fault system that generated the MCC. Modeling of a severe viscosity drop owing to the presence of a partially molten layer, compared to a crust with no melt, demonstrates that the presence of melt slightly enhances upward advection of material and heat. Our experiments show that, when associated with boundary-driven extension, far-field horizontal extension provides space for the domes. Therefore, the buoyancy of migmatite cores contributes little to the outer envelope of metamorphic core complexes, although it may play a significant role in the internal dynamics of the partially molten layer. The presence of melt also favors heterogeneous bulk pure shear of the dome as opposed to the bulk simple shear, which dominates in melt-absent experiments. Melt presence affects the shape of P-T-t paths only slightly for material located near the top of the low-viscosity layer but leads to more complex flow paths for material inside the layer. The effect of extension rate is significant: at high extension rate (cm yr− 1 in the core complex region), partially molten crust crystallizes and cools along a high geothermal gradient (35 to 65 °C km− 1); material remains partially molten in the dome during ascent. At low strain rate (mm yr 1 in the core complex region), the partially molten crust crystallizes at high pressure; this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20 to 35 °C km− 1) during ascent. Therefore, the models predict distinct crystallization versus exhumation histories of migmatite cores as a function of extensional strain rates. The Shuswap metamorphic core complex (British Columbia, Canada) exemplifies a metamorphic core complex in which an asymmetric, detachment-controlled migmatite dome records rapid exhumation and cooling likely related to faster rates of extension. In contrast the Ruby Mountain-East Humboldt Ranges (Nevada, U.S.A.) exhibits characteristics associated with slower metamorphic core complexes.  相似文献   
139.
This paper discusses the mineralogy, whole-rock geochemistry and elemental mass balance of the hydrothermal alteration zones within the Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. The hydrothermal alteration and mineralisation developed in four stages, namely (i) the early stage consisting of a central copper-gold-bearing biotite (potassic), proximal actinolite (inner propylitic) and the distal chlorite-epidote (outer propylitic) zones; (ii) the transitional stage represented by the chlorite-sericite (intermediate argillic) zone; (iii) the late stages distinguished into the sericite-paragonite (argillic) and pyrophyllite-andalusite (advanced argillic) zones; and (iv) the very late stage typified by the illite-sericite zone. In general, major elements (particularly Ca, Mg, Na and K) and some minor and rare earth elements decrease from the least altered rocks towards the late alteration zones as a consequence of the breakdown of Ca-bearing hornblende, biotite and plagioclase. Chemical discrimination by means of millicationic R1-R2 diagram indicates that R1 [4Si − 11(Na + K) − 2(Fe + Ti)] increases while R2[6Ca + 2Mg + Al] decreases with increasing alteration intensity, from least-altered, through early, transitional, to late alteration zones. Rare earth elements-chondrite (C1) normalised patterns also exhibit the depletion of the elements through the subsequent alteration zones. These results are consistent with the elemental mass balance calculation using the isocon method which shows that the degree of mass and volume depletion systematically increases during alteration. A decrease of the elements as well as mass and volume from early, through transitional to late alteration stages may imply a general decrease of the element activities in hydrothermal fluids during the formation of the alteration zones.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号