首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   2篇
  国内免费   2篇
测绘学   2篇
大气科学   17篇
地球物理   32篇
地质学   51篇
海洋学   10篇
天文学   63篇
综合类   1篇
自然地理   19篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   6篇
  2015年   5篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   7篇
  2010年   5篇
  2009年   12篇
  2008年   7篇
  2007年   11篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   2篇
  2002年   11篇
  2001年   2篇
  2000年   7篇
  1998年   1篇
  1997年   1篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
31.
A hypervelocity oblique impact results in a downrange-moving vapor cloud, a significant fraction of which is derived from the projectile. Since the vapor cloud expands to great extent and becomes very tenuous quickly on a planet with a thin or no atmosphere, it does not leave a well-defined geologic expression. The thick atmosphere of Venus, however, is sufficient to contain such a rapidly expanding vapor cloud. As a result of atmospheric interactions, impact vapor condenses and contributes to run-out flows around craters on Venus. Previous results of both laboratory experiments and simple semi-analytical calculations indicate that an impact-vapor origin can account for the morphology of run-out flows on Venus most consistently. However, the detailed dynamics and geologic record of downrange-moving impact vapor clouds in Venus's atmosphere are not understood quantitatively. To approach these problems, we carried out two-dimensional hydrocode calculations. Parametric studies of these hydrocode calculations yield simple scaling laws for both the total downrange travel distance and the final temperature of impact vapor clouds under conditions on Venus. Under typical impact conditions, impact vapor clouds travel downrange more than a crater radius prior to the completion of crater formation. Furthermore, the scaling law for the total travel distance is compared with observations for the downrange offset of the source regions of run-out flows around oblique craters. The results of this comparison suggest that energy/momentum-partitioning processes other than pure shock coupling may play important roles in hypervelocity impact at planetary scales. The results of hydrocode calculations also indicate that the terminal temperature of the impact vapor is close to the condensation temperatures of silicates, suggesting that two scenarios are possible for expected range of impact conditions: 1. Impact vapor condenses and forms run-out flows. 2. Impact vapor fails to condense and leaves no run-out flows. Consequently, natural variation in impact angle, velocity, and projectile composition may account for partial occurrence of run-out flows around impact craters on Venus.  相似文献   
32.
Adakite-like features are recognized in the Late Miocene (~10 Ma) porphyritic intrusions of the Los Pelambres giant porphyry copper deposit, central Chile (32°S). Located within the southern portion of the flat-slab segment (28–33°S) of the Chilean Andes, the Al- and Na-rich porphyries of Los Pelambres display distinctly higher Sr/Y (~100–300) and LaN/YbN (~25–60) ratios than contemporaneous and barren magmatic units (e.g., La Gloria pluton, Cerro Aconcagua volcanic rocks) of the same Andean magmatic belt. Strong fractionation of heavy rare earth elements (HREE), absence of Eu anomalies, high Sr/Y and Zr/Sm and low Nb/Ta ratios suggest melt extraction from a garnet-amphibolite source. The Late-Miocene adakite-like porphyritic intrusions at Los Pelambres formed closely related in time and space to the subduction of the Juan Fernández Ridge (JFR) hotspot chain along the Chilean margin. Current tectonic reconstructions reveal that, at the time of formation of the Los Pelambres rocks, a W-E segment of the JFR started to subduct beneath them, producing a slow-down of a previously rapid southward migration of a NE-ridge—trench collision. These particular tectonic conditions are favorable for the origin of the Los Pelambres porphyry suite by melting of subducting young hotspot rocks under flat-slab conditions. The incorporation of crustal components into the oceanic lithopheric magma source by subduction erosion is evidenced by the Sr-Nd isotope composition of the Los Pelambres rocks different from the MORB signatures of true adakites. A close relationship apparently exists between the origin of this adakite-like magmatism and the source of the mineralization in the Los Pelambres porphyry copper deposit.Editorial handling: R.J. Goldfarb  相似文献   
33.
34.
Abstract— On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater‐forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth's atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.  相似文献   
35.
36.
Impact angle plays a significant role in determining the fate of the projectile. In this study, we use a suite of hypervelocity impact experiments to reveal how impact angle affects the preservation, distribution, and physical state of projectile residues in impact craters. Diverse types of projectiles, including amorphous silicates, crystalline silicates, and aluminum, in two sizes (6.35 and 12.7 mm), were launched into blocks of copper or 6061 aluminum at speeds between 1.9 and 5.7 km s−1. Crater interiors preserve projectile residues in all cases, including conditions relevant to the asteroid belt. These residues consist of projectile fragments or projectile-rich glasses, depending on impact conditions. During oblique impacts at 30° and 45°, the uprange crater wall preserves crystalline fragments of the projectile. The fragments of water-rich projectiles such as antigorite remain hydrated. Several factors contribute to enhanced preservation on the uprange wall, including a weaker shock uprange, uprange acceleration as the shock reflects off the back of the projectile, and rapid quenching of melts along the projectile–target interface. These findings have two broader implications. First, the results suggest a new collection strategy for flyby sample return missions. Second, these results predict that the M-type asteroid Psyche should bear exogenic, impactor-derived debris.  相似文献   
37.
Main channel habitats of the Ohio, Missouri, and Upper Mississippi Rivers were surveyed during the summers of 2004, 2005 and 2006 using a probability-based sampling design to characterize inter-annual and inter-river variation in suspended chlorophyll a (CHLa) and related variables. Large (fivefold) differences in CHLa were observed with highest concentrations in the Upper Mississippi (32.3 ± 1.8 μg L−1), intermediate values in the Missouri (19.7 ± 1.1 μg L−1) and lowest concentrations in the Ohio (6.8 ± 0.5 μg L−1). Inter-annual variation was small in comparison to inter-river differences suggesting that basin-specific factors exert greater control over river-wide CHLa than regional-scale processes influencing climate and discharge. The rivers were characterized by variable but generally low light conditions as indicated by depth-averaged underwater irradiance <4 E m−2 day−1 and high ratios of channel depth to euphotic depth (>3). Despite poor light conditions, regression analyses revealed that TP was the best single predictor of CHLa (R 2 = 0.40), though models incorporating both light and TP performed better (R 2 = 0.60). Light and nutrient conditions varied widely within rivers and were inversely related, suggesting that riverine phytoplankton may experience shifts in resource limitation during transport. Inferred grazing and sedimentation losses were large yet CHLa concentrations did not decline downriver indicating that growth and loss processes were closely coupled. The contribution by algae to suspended particulate organic matter in these rivers (mean = 41%) was similar to that of lakes (39%) but lower relative to reservoirs (61%).  相似文献   
38.
The structures of sodium silicate and aluminosilicate glasses quenched from melts at high pressure (6-10 GPa) with varying degrees of polymerization (fractions of nonbridging oxygen) were explored using solid-state NMR [17O and 27Al triple-quantum magic-angle spinning (3QMAS) NMR]. The bond connectivity in melts among four and highly coordinated network polyhedra, such as [4]Al, [5,6]Al, [4]Si, and [5,6]Si, at high pressure is shown to be significantly different from that at ambient pressure. In particular, in the silicate and aluminosilicate melts, the proportion of nonbridging oxygen (NBO) generally decreases with increasing pressure, leading to the formation of new oxygen clusters that include 5- and 6-coordinated Si and Al in addition to 4-coordinated Al and Si, such as [4]Si-O-[5,6]Si, [4]Si-O-[5,6]Al and Na-O-[5,6]Si. While the fractions of [5,6]Al increase with pressure, the magnitude of this increase diminishes with increasing degrees of ambient-pressure polymerization under isobaric conditions. Incorporating the above structural information into models of melt properties reproduces the anomalous pressure-dependence of O2− diffusivity and viscosity often observed in silicate melts.  相似文献   
39.
A conservative staggered-grid finite difference method is presented for computing the electromagnetic induction response of an arbitrary heterogeneous conducting sphere by external current excitation. This method is appropriate as the forward solution for the problem of determining the electrical conductivity of the Earth's deep interior. This solution in spherical geometry is derived from that originally presented by Mackie et al. (1994 ) for Cartesian geometry. The difference equations that we solve are second order in the magnetic field H , and are derived from the integral form of Maxwell's equations on a staggered grid in spherical coordinates. The resulting matrix system of equations is sparse, symmetric, real everywhere except along the diagonal and ill-conditioned. The system is solved using the minimum residual conjugate gradient method with preconditioning by incomplete Cholesky decomposition of the diagonal sub-blocks of the coefficient matrix. In order to ensure there is zero H divergence in the solution, corrections are made to the H field every few iterations. In order to validate the code, we compare our results against an integral equation solution for an azimuthally symmetric, buried thin spherical shell model ( Kuvshinov & Pankratov 1994 ), and against a quasi-analytic solution for an azimuthally asymmetric configuration of eccentrically nested spheres ( Martinec 1998 ).  相似文献   
40.
The Sutter's Mill (SM) meteorite fell in El Dorado County, California, on April 22, 2012. This meteorite is a regolith breccia composed of CM chondrite material and at least one xenolithic phase: oldhamite. The meteorite studied here, SM2 (subsample 5), was one of three meteorites collected before it rained extensively on the debris site, thus preserving the original asteroid regolith mineralogy. Two relatively large (10 μm sized) possible diamond grains were observed in SM2‐5 surrounded by fine‐grained matrix. In the present work, we analyzed a focused ion beam (FIB) milled thin section that transected a region containing these two potential diamond grains as well as the surrounding fine‐grained matrix employing carbon and nitrogen X‐ray absorption near‐edge structure (C‐XANES and N‐XANES) spectroscopy using a scanning transmission X‐ray microscope (STXM) (Beamline 5.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory). The STXM analysis revealed that the matrix of SM2‐5 contains C‐rich grains, possibly organic nanoglobules. A single carbonate grain was also detected. The C‐XANES spectrum of the matrix is similar to that of insoluble organic matter (IOM) found in other CM chondrites. However, no significant nitrogen‐bearing functional groups were observed with N‐XANES. One of the possible diamond grains contains a Ca‐bearing inclusion that is not carbonate. C‐XANES features of the diamond‐edges suggest that the diamond might have formed by the CVD process, or in a high‐temperature and ‐pressure environment in the interior of a much larger parent body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号