首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   12篇
测绘学   12篇
大气科学   31篇
地球物理   97篇
地质学   182篇
海洋学   19篇
天文学   66篇
自然地理   26篇
  2023年   2篇
  2021年   7篇
  2020年   10篇
  2019年   10篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   24篇
  2014年   18篇
  2013年   26篇
  2012年   17篇
  2011年   33篇
  2010年   36篇
  2009年   26篇
  2008年   21篇
  2007年   12篇
  2006年   27篇
  2005年   12篇
  2004年   20篇
  2003年   6篇
  2002年   14篇
  2001年   10篇
  2000年   9篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   3篇
  1963年   1篇
排序方式: 共有433条查询结果,搜索用时 484 毫秒
211.
In this paper, steady-state conditions for ideal monodisperse dry granular materials are both theoretically and numerically analysed. A series of discrete element (DEM) numerical simulations have been performed on a periodic cell by imposing stress paths characterized by different Lode angles, pressures, and deviatoric strain rates. The dependence of the material response on both inertial number and loading path has been discussed in terms of void ratio, fabric, and granular temperature. DEM numerical results have been finally compared with the prediction of an already conceived model based on both kinetic and critical state theories, here suitably modified to account for three-dimensional conditions.  相似文献   
212.
The thickness of the seismogenic layer is a key parameter for seismic hazard, since it can be used to constrain the maximum depth of faulting and the potential magnitude. In this study, we compute the seismogenic thickness in the Italian region by defining the lower seismicity cut‐off, using high‐quality hypocentral locations of earthquakes that occurred in the past decade. Along the eastern Alps, the seismogenic thickness is about 12–14 km, laterally homogeneous along the entire south‐verging thrust front. In the Apennines extensional belt, lateral changes in seismogenic thickness are evident, and correlate with changes in the seismic energy released by past earthquakes. The potential magnitude is larger in the southern Apennines where the seismogenic thickness is greater (16–18 km) than in the northern Apennines where it is less (6–10 km) and seismic energy is partially released by the creeping of faults.  相似文献   
213.
214.
The current work aimed to identify the source of an oil spill off the coast of Maranhão, Brazil, in September 2005 and effect a preliminary geochemical survey of this environment. A combination of bulk analytical parameters, such as carbon isotope (δ13C) and Ni/V ratios, and conventional fingerprinting methods (High Resolution Gas Chromatography and Mass Spectrometry) were used. The use of bulk methods greatly speeded source identification for this relatively unaltered spill: identification of the likely source was possible at this stage. Subsequent fingerprinting of biomarker distributions supported source assignment, pointing to a non-Brazilian oil. Steranes proved the most useful biomarkers for sample correlation in this work. Distribution patterns of environmentally more resilient compound types, such as certain aromatic structures, proved inconclusive for correlation, probably in view of their presence in the background.  相似文献   
215.
The southernmost segment of the Andes of southern Patagonia and Tierra del Fuego forms a ~ 700 km long orogenic re-entrant with an interlimb angle of ~ 90° known as Patagonian orocline. No reliable paleomagnetic evidence has been gathered so far to assess whether this great orogenic bend is a primary arc formed over an articulated paleomargin, or is due to bending of a previously less curved (or rectilinear) chain. Here we report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) study carried out on 22 sites (298 oriented cores), predominantly sampled in Eocene marine clays from the external Magallanes belt of Tierra del Fuego. Five sites (out of six giving reliable paleomagnetic results) containing magnetite and subordinate iron sulphides yield a positive fold test at the 99% significance level, and document no significant rotation since ~ 50 Ma. Thus, the Patagonian orocline is either a primary bend, or an orocline formed after Cretaceous–earliest Tertiary rotations. Our data imply that the opening of the Drake Passage between South America and Antarctica (probably causing the onset of Antarctica glaciation and global climate cooling), was definitely not related to the formation of the Patagonian orocline, but was likely the sole consequence of the 32 ± 2 Ma Scotia plate spreading. Well-defined magnetic lineations gathered at 18 sites from the Magallanes belt are sub-parallel to (mostly E–W) local fold axes, while they trend randomly at two sites from the Magallanes foreland. Our and previous AMS data consistently show that the Fuegian Andes were characterized by a N–S compression and northward displacing fold–thrust sheets during Eocene–early Miocene times (50–20 Ma), an unexpected kinematics considering coeval South America–Antarctica relative motion. Both paleomagnetic and AMS data suggest no significant influence from the E–W left-lateral Magallanes–Fagnano strike–slip fault system (MFFS), running a few kilometres south of our sampling sites. We thus speculate that strike–slip fault offset in the Fuegian Andes may range in the lower bound values (~ 20 km) among those proposed so far. In any case our data exclude any influence of strike–slip tectonics on the genesis of the great orogenic bend called Patagonian orocline.  相似文献   
216.
217.
218.
Feedback from star formation is thought to play a key role in the formation and evolution of galaxies, but its implementation in cosmological simulations is currently hampered by a lack of numerical resolution. We present and test a subgrid recipe to model feedback from massive stars in cosmological smoothed particle hydrodynamics simulations. The energy is distributed in kinetic form among the gas particles surrounding recently formed stars. The impact of the feedback is studied using a suite of high-resolution simulations of isolated disc galaxies embedded in dark haloes with total mass 1010 and  1012  h −1 M  . We focus, in particular, on the effect of pressure forces on wind particles within the disc, which we turn off temporarily in some of our runs to mimic a recipe that has been widely used in the literature. We find that this popular recipe gives dramatically different results because (ram) pressure forces on expanding superbubbles determine both the structure of the disc and the development of large-scale outflows. Pressure forces exerted by expanding superbubbles puff up the disc, giving the dwarf galaxy an irregular morphology and creating a galactic fountain in the massive galaxy. Hydrodynamic drag within the disc results in a strong increase in the effective mass loading of the wind for the dwarf galaxy, but quenches much of the outflow in the case of the high-mass galaxy.  相似文献   
219.
Modelling seismic attenuation is one of the most critical points in the hazard assessment process. In this article we consider the spatial distribution of the effects caused by an earthquake as expressed by the values of the macroseismic intensity recorded at various locations surrounding the epicentre. Considering the ordinal nature of the intensity, a way to show its decay with distance is to draw curves—isoseismal lines—on maps, which bound points of intensity not smaller than a fixed value. These lines usually take the form of closed and nested curves around the epicentre, with highly different shapes because of the effects of ground conditions and of complexities in rupture propagation. Forecasting seismic attenuation of future earthquakes requires stochastic modelling of the decay on the basis of a common spatial pattern. The aim of this study is to consider a statistical methodology that identifies a general shape, if it exists, for isoseismal lines of a set of macroseismic fields. Data depth is a general nonparametric method for analysis of probability distributions and datasets. It has arisen as a statistical method to order points of a multivariate space, e.g., Euclidean space \({\mathbb {R}}^{p}\), \(p \ge 1\), according to the centrality with respect to a distribution or a given data cloud. Recently, this method has been extended to the ordering of functions and trajectories. In our case, for a fixed intensity decay \(\varDelta I\), we build a set of convex hulls that enclose the sites of felt intensity \(I_s \ge I_0 -\varDelta I\), one for each macroseismic field of a set of earthquakes that are considered as similar from the attenuation point of view. By applying data depth functions to this functional dataset, it is possible to identify the most central curve, i.e., the attenuation pattern, and to consider other properties like variability, outlyingness, and possible clustering of such curves. Results are shown for earthquakes that occurred on the Central Po Plain in May 2012, and on the eastern flank of Mt. Etna since 1865.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号