首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   542篇
  免费   16篇
  国内免费   7篇
测绘学   13篇
大气科学   68篇
地球物理   148篇
地质学   162篇
海洋学   71篇
天文学   65篇
综合类   1篇
自然地理   37篇
  2023年   7篇
  2022年   5篇
  2021年   10篇
  2020年   9篇
  2019年   9篇
  2018年   12篇
  2017年   20篇
  2016年   29篇
  2015年   12篇
  2014年   30篇
  2013年   32篇
  2012年   26篇
  2011年   32篇
  2010年   24篇
  2009年   36篇
  2008年   41篇
  2007年   18篇
  2006年   29篇
  2005年   33篇
  2004年   22篇
  2003年   18篇
  2002年   12篇
  2001年   14篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   6篇
  1972年   1篇
排序方式: 共有565条查询结果,搜索用时 15 毫秒
61.
Past and future sea-level rise along the coast of North Carolina,USA   总被引:1,自引:1,他引:0  
We evaluate relative sea level (RSL) trajectories for North Carolina, USA, in the context of tide-gauge measurements and geological sea-level reconstructions spanning the last ~11,000 years. RSL rise was fastest (~7 mm/yr) during the early Holocene and slowed over time with the end of the deglaciation. During the pre-Industrial Common Era (i.e., 0–1800 CE), RSL rise (~0.7 to 1.1 mm/yr) was driven primarily by glacio-isostatic adjustment, though dampened by tectonic uplift along the Cape Fear Arch. Ocean/atmosphere dynamics caused centennial variability of up to ~0.6 mm/yr around the long-term rate. It is extremely likely (probability P=0.95) that 20th century RSL rise at Sand Point, NC, (2.8 ± 0.5 mm/yr) was faster than during any other century in at least 2,900 years. Projections based on a fusion of process models, statistical models, expert elicitation, and expert assessment indicate that RSL at Wilmington, NC, is very likely (P=0.90) to rise by 42–132 cm between 2000 and 2100 under the high-emissions RCP 8.5 pathway. Under all emission pathways, 21st century RSL rise is very likely (P>0.90) to be faster than during the 20th century. Due to RSL rise, under RCP 8.5, the current ‘1-in-100 year’ flood is expected at Wilmington in ~30 of the 50 years between 2050-2100.  相似文献   
62.
63.
A case study is presented to assess the relevance of geomorphology in hydrogeological phenomena in an arid coastal area in the Argentinean extra-Andean Patagonia (Península Valdés) with an average rainfall of 232 mm/year and a soil moisture deficit of about 472 mm/year. Various geomorphic units were identified by interpreting Landsat 7 satellite images processed with ER Mapper software and then surveyed in the field, as well as by geological characterization. The hydrodynamic analysis was based on a survey of 89 wells, the construction of equipotential maps, and the interpretation of pumping-test results by a non-equilibrium method. The hydrochemical characterization was based on chemical tests analyzed with the Easy_Quim 6.0 application. The combination of geomorphological, geological, hydrodynamic and hydrochemical elements allowed the definition of hydromorphological units that are typical of recharge, circulation and discharge areas, the latter both for coastal and inland areas in wetlands (salt pans) with elevations to ?40 m relative to sea level. These units and the criteria used for their definition allow immediate recognition of hydrogeological phenomena in arid regions such as the extra-Andean Patagonia, with low information density but with near-optimal satellite imaging of landforms due to the lack of vegetation cover.  相似文献   
64.
Climate is an important driver of dissolved organic carbon (DOC) dynamics in boreal catchments characterized by networks of streams within forest-wetland landscape mosaics. In this paper, we assess how climate change may affect stream DOC concentrations ([DOC]) and export from boreal forest streams with a multi-model ensemble approach. First, we apply an ensemble of regional climate models (RCMs) to project soil temperatures and stream-flows. These data are then used to drive two biogeochemical models of surface water DOC: (1) The Integrated Catchment model for Carbon (INCA-C), a detailed process-based model of DOC operating at the catchment scale, and (2) The Riparian Integration Model (RIM), a simple dynamic hillslope scale model of stream [DOC]. All RCMs project a consistent increase in temperature and precipitation as well as a shift in spring runoff peaks from May to April. However, they present a considerable range of possible future runoff conditions with an ensemble median increase of 31 % between current and future (2061–2090) conditions. Both biogeochemical models perform well in describing the dynamics of present-day stream [DOC] and fluxes, but disagree in their future projections. Here, we assess possible futures in three boreal catchments representative of forest, mire and mixed landscape elements. INCA-C projects a wider range of stream [DOC] due to its temperature sensitivity, whereas RIM gives consistently larger inter-annual variation and a wider range of exports due to its sensitivity to hydrological variations. The uncertainties associated with modeling complex processes that control future DOC dynamics in boreal and temperate catchments are still the main limitation to our understanding of DOC mechanisms under changing climate conditions. Novel, currently overlooked or unknown drivers may appear that will present new challenges to modelling DOC in the future.  相似文献   
65.
The use of real-time landslide early warning systems is attracting the attention of the scientific community, since it allows to assess “where” and “when” a shallow rainfall-induced landslide might occur by coupling rainfall amounts, hydrological models and slope-stability analysis. The paper deals with the main results of a back analysis, which refers to the application of a physically based stability model [Shallow Landslides Instability Prediction (SLIP)] on regional scale. The analysis concerns the occurrence of some recent rainfall-induced shallow landslides in the municipal territory of Broni, in the area of Oltrepò Pavese (Northern Italy). The study area is a hilly region 2.4 km2 wide, where more than 40 % of the territory has slopes steeper than 15° and altitudes are between 90 and 250 m a.s.l. As regards the geologic setting, clayey-silty shallow colluvial deposits, with a maximum thickness of about 3 m, overlap a bedrock made of clayey shales, calcareous flysch and marls. The SLIP model is based on the limit equilibrium method applied to an infinite slope and on the Mohr–Coulomb strength criterion for the soil. By assuming that the main hydro-geotechnical process that leads to failure is the saturation of parts of the soil, the model allows to take into account the condition of partial saturation of the soil. The safety factor (F S ) of a slope is also function of previous rainfalls. After the implementation of the model at territory scale, the input data have been introduced through a geographic information systems platform. In the current paper we mainly intend to evaluate the performance of SLIP at catchment scale, by comparison to (1) observed landslide events and (2) another well-established physically based model (TRIGRS). Further, we want to assess the suitability of the model as early warning tool. The results produced by the model are analyzed both in terms of safety factor maps, corresponding to some particular rainfall events, and in terms of the time-varying percentage of unstable areas over a 2-year span period. The paper shows the comparison between observed landslide localizations and model predictions. A quantitative comparison between the SLIP model and TRIGRS is presented, only for the most important event that occurred during the analyzed period. Overall, the results of the stability analyses based on observed rainfalls show the capability of the SLIP model to predict, in real-time and on a wide area, the occurrence of the analyzed phenomena.  相似文献   
66.
The main objective of this study was to assess the impact of a suspended cover on the evaporation loss of an agricultural water reservoir (AWR). To this aim, a detailed data collection was carried out in a typical AWR located in south‐eastern Spain during 2 consecutive years. During the first year, the reservoir remained uncovered, while during the second year it was covered with a double black polyethylene (PE) shade cloth. On an annual scale, it was observed that the cover can provide a reduction of evaporation loss of 85%. Two approaches, energy balance and mass transfer, were used to analyse the effect of the cover on the evaporation process. Important modifications were observed on the magnitude, sign, annual trend and relative weight of the components of the energy balance. The changes were ascribed to the strong reduction of net radiation and to the substantial weight of the heat storage and sensible heat flux in the energy balance. A relevant finding was the contrast between the patterns of the annual evaporation curve for open‐water and covered conditions. The mass transfer approach allowed discriminating between the wind‐ and radiation‐shelter effects on the evaporation term. The reduction in water‐to‐air vapour deficit was the main factor explaining the high efficiency of the cover, whereas the reduction of the mass transfer coefficient was a modulating factor that accounted for the wind‐shelter effect. Overall, both approaches provided a sound basis to describe and explain the physical mechanisms underlying the high performance of the tested cover. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
67.
A new method to detect and study young star clusters is presented. This is based on the knowledge that the light of stellar populations with ages between ∼ 200 Myr and ∼ 1/2 Gyr is dominated by very red, bright AGB stars. Star clusters undergoing this so-called ‘AGB phase transition’ are featured by very red V-K colours, like those of Magellanic Clouds clusters, while optical colours like B-V remain blue typical for young populations. The best channel for detecting star clusters in this age range is therefore the near IR. From the theoretical side, SSP models including properly the contribution of the bright AGB are required (Maraston, 1998). Using this strategy, we succesfully detected the AGB phase transition among the clusters of the merger remnant galaxy NGC 7252 (see Maraston etal., 2001). This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
68.
In this paper, the methods of digital rock physics are applied to determine pressure-dependent effective thermal conductivity in rock samples. Simulations are performed with an in-house three-dimensional finite volume code. In the first step, four numerical models are derived from a given tomographic scan of Berea sandstone. Consequently, simulations of the thermal conductivity at ambient conditions are performed and validated with experimental data. In a second step, a new workflow for the determination of the pressure-dependent thermal conductivity in rock samples is elaborated, tested and calibrated. Results originating from the derived workflow show very good agreement with experimental data.  相似文献   
69.
Natural Hazards - The ability to forecast extreme precipitation events has become increasingly important over the last decades due to their significant impacts on society and properties. In this...  相似文献   
70.
Changes in the agriculture sector are essential to mitigate and adapt to climate change, meet growing food demands, and improve the livelihoods of poor smallholder producers. What agricultural strategies are needed to meet these challenges? To what extent are there synergies among these strategies? This paper examines these issues for smallholder producers in Kenya across several agroecological zones. Several practices emerge as triple wins, supporting climate adaptation, greenhouse gas mitigation, and profitability goals. In particular, integrated soil fertility management and improved livestock feeding are shown to provide multiple benefits across all agroecological zones examined. Triple wins of other agricultural practices are limited to specific agroecological zones. Irrigation and soil and water conservation, for example, are essential for adaptation, mitigation, and profitability in arid areas. The results suggest that agricultural investments targeted toward these triple-win strategies will have the greatest payoff in terms of increased resilience of farm and pastoralist households and global climate change mitigation. To reap the benefits of triple-win strategies will require that policymakers, researchers, and practitioners move away from isolated approaches focused on either adaptation or mitigation or rural income generation toward a more holistic assessment of joint strategies as well as their tradeoffs and synergies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号