首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   19篇
  国内免费   5篇
测绘学   8篇
大气科学   32篇
地球物理   150篇
地质学   164篇
海洋学   35篇
天文学   58篇
综合类   1篇
自然地理   16篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   16篇
  2013年   15篇
  2012年   7篇
  2011年   18篇
  2010年   16篇
  2009年   24篇
  2008年   22篇
  2007年   12篇
  2006年   14篇
  2005年   17篇
  2004年   15篇
  2003年   9篇
  2002年   10篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   19篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   14篇
  1982年   9篇
  1981年   13篇
  1980年   9篇
  1979年   13篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   7篇
  1974年   7篇
  1973年   8篇
  1972年   3篇
  1971年   3篇
  1951年   1篇
排序方式: 共有464条查询结果,搜索用时 15 毫秒
371.
A field study was carried out to investigate the development of alternate bars in a secondary channel of the Loire River (France) as a function of discharge variations. We combined frequent bathymetric surveys, scour chains and stratigraphical analysis of deposits with measurements and modelling of flow dynamics. The channel exhibited migrating bars, non‐migrating bars and superimposed dunes. Possible mechanisms of bar initiation were found to be chutes associated with changes of bank direction and instability resulting from interactions between existing bars during the fall in water level after floods. We propose that the reworking of bar sediments during low flows (high width‐to‐depth ratio β), reinforced by high values of the Shields mobility parameter, can explain the formation or re‐generation of new alternate migrating bars during a subsequent flood. The migration pattern of the bars was found to be cyclic and to depend mainly on (i) channel layout and (ii) the dynamics of superimposed dunes with heights and lengths depending on location and discharge value. For instance, the hysteresis affecting the steepness of dunes influences the flow resistance of the dunes as well as the celerity of migrating bars during flood events. We compare the findings from the field with results from theoretical studies on alternate bars. This gives insight in the phenomena occurring in the complex setting of real rivers, but it also sheds light on the extent to which bar theories based on idealized cases can predict those phenomena. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
372.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   
373.
The Atlantic meridional overturning circulation (AMOC) in the last 250?years of the 700-year-long present-day control integration of the Community Climate System Model version 3 with T85 atmospheric resolution exhibits a red noise-like irregular multi-decadal variability with a persistence longer than 10?years, which markedly contrasts with the preceding ~300 years of very regular and stronger AMOC variability with ~20?year periodicity. The red noise-like multi-decadal AMOC variability is primarily forced by the surface fluxes associated with stochastic changes in the North Atlantic Oscillation (NAO) that intensify and shift northward the deep convection in the Labrador Sea. However, the persistence of the AMOC and the associated oceanic anomalies that are directly forced by the NAO forcing does not exceed about 5?years. The additional persistence originates from anomalous horizontal advection and vertical mixing, which generate density anomalies on the continental shelf along the eastern boundary of the subpolar gyre. These anomalies are subsequently advected by the mean boundary current into the northern part of the Labrador Sea convection region, reinforcing the density changes directly forced by the NAO. As no evidence was found of a clear two-way coupling with the atmosphere, the multi-decadal AMOC variability in the last 250?years of the integration is an ocean-only response to stochastic NAO forcing with a delayed positive feedback caused by the changes in the horizontal ocean circulation.  相似文献   
374.
Stationarity Scores on Training Images for Multipoint Geostatistics   总被引:2,自引:2,他引:0  
This research introduces a novel method to assess the validity of training images used as an input for Multipoint Geostatistics, alternatively called Multiple Point Simulation (MPS). MPS are a family of spatial statistical interpolation algorithms that are used to generate conditional simulations of property fields such as geological facies. They are able to honor absolute “hard” constraints (e.g., borehole data) as well as “soft” constraints (e.g., probability fields derived from seismic data, and rotation and scale). These algorithms require 2D or 3D training images or analogs whose textures represent a spatial arrangement of geological properties that is presumed to be similar to that of a target volume to be modeled. To use the current generation of MPS algorithms, statistically valid training image are required as input. In this context, “statistical validity” includes a requirement of stationarity, so that one can derive from the training image an average template pattern. This research focuses on a practical method to assess stationarity requirements for MPS algorithms, i.e., that statistical density or probability distribution of the quantity shown on the image does not change spatially, and that the image shows repetitive shapes whose orientation and scale are spatially constant. This method employs image-processing techniques based on measures of stationarity of the category distribution, the directional (or orientation) property field and the scale property field of those images. It was successfully tested on a set of two-dimensional images representing geological features and its predictions were compared to actual realizations of MPS algorithms. An extension of the algorithms to 3D images is also proposed. As MPS algorithms are being used increasingly in hydrocarbon reservoir modeling, the methods described should facilitate screening and selection of the input training images.  相似文献   
375.
The deltaic plain of the Petite Camargue which constitutes the western part of the Rhone Delta, began its main progradation around 2000 yr ago. Several delta lobes follow each other and have participated in the deltaic evolution. The deltaic lobes have distinct morphologies which reflect the dynamic fluvial and marine processes under the influence of climatic and human controls. Two delta lobe systems were built by the Daladel and Peccaïs channels, after which a deflected wave-influenced delta lobe was formed by the La Ville and Saint-Roman channels. The latest channel, the Rhone Vif channel, is skewed because this channel was completely canalized and engineered up to its mouth in the beginning of the 16th century. Since the avulsion of this channel about 1550 A.D., the coastline of the Petite Camargue has been especially affected by the influence of waves and currents. The spits replaced the beach ridges which juxtaposed themselves and have migrated westward since the 16th century. The formation of the western part of the delta in the last 2000 yr is affected by not only the fluvial sedimentary fluxes and the coastal dynamics to the mouth but also climatic change and human influence.  相似文献   
376.
In order to mimic the photodegradation of vitamin E during phytoplankton senescence and study the behaviour of the resulting photoproducts during cell lysis, vitamin E dispersed in seawater was irradiated with solar light in the presence of hematoporphyrin as sensitizer. Under these conditions, singlet oxygen-mediated photooxidation and free radical oxidation (autoxidation) acted simultaneously on the substrate, affording 4,8,12-trimethyltridecanal, 4,8,12-trimethyltridecanoic acid, 6,10,14-trimethylpentadecan-2-one, α-tocopherylquinone, 4,8,12,16-tetramethylheptadecan-4-olide, 2,3-epoxy-α-tocopherylquinone and 5,6-epoxy-α-tocopherylquinone as minor products. Different mechanisms were proposed to explain the formation of these different isoprenoids. The main products (85% of the degraded substrate) appeared to be previously described diastereoisomeric trimeric oxidation products of vitamin E, whose pyrolysis during gas chromatography–mass spectrometry (GC–MS) afforded 2,6,10,14-tetramethylpentadec-1-ene (prist-1-ene). On the basis of their greater ability to produce prist-1-ene during pyrolysis than intact vitamin E and their highly favoured production in phytoplanktonic cells, these trimers are proposed as likely sources of this isoprenoid alkene, previously identified in many pyrolysates from immature kerogens.  相似文献   
377.
The spectral global baroclinic primitive equation model described in Part I of this paper has been extensively tested. The model has been run daily from operational analyses for over a year. From this large sample of forecasts, verification statistics have been collected and compared with similar statistics collected from three competitive grid‐point models. The spectral model is also compared with the grid‐point models in a synoptic case study.

A second case study demonstrates the effect of horizontal resolution and physical effects on spectral model forecasts. The results of these experiments demonstrate that the spectral model is highly competitive with other models, in terms of both accuracy and computational efficiency. On 18 February 1976 the spectral model became the operational Canadian large‐scale forecast model.  相似文献   
378.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   
379.
Conditions for the arrest of a vertical propagating dyke   总被引:1,自引:0,他引:1  
Magma ascent towards the Earth’s surface occurs through dyke propagation in the vast majority of cases. We investigate two purely mechanical effects unrelated to cooling or solidification that lead to the arrest of propagation, so that no eruption occurs. The first is that the input of magma from the source is not maintained continuously, such that a fixed volume of magma is released. Laboratory experiments show that, in this case, the dyke stops at a finite distance from the source. This behaviour is specific to the fracturing process in 3-D. We derive a relationship for the minimum magma volume required for an eruption as a function of magma buoyancy and source depth. When large magma volumes are available, eruption may also be prevented by a thick low density layer in the upper crust. Numerical studies of dyke propagation show that the dyke continues to rise even though it is negatively buoyant. Magma accumulates in a swollen nose region at the interface between the low density layer and the dense basement. Magma overpressure is largest at this interface and increases with increasing penetration into the upper layer. It may become large enough to induce horizontal fractures in the dyke walls and lateral intrusion of a sill, which prevents eruption. This requires that the thickness of the low density layer exceeds a threshold value that depends on the density contrast between magma and host rock. If the magma volume is smaller than a threshold value, neither sill intrusion nor eruption are possible and magma gets stored in a horizontal blade-shaped dyke straddling the interface. Scaling laws for variations of ascent rate and for the minimum magma volume allow diagnosis of a failed eruption.  相似文献   
380.
The present-day architecture of the Saharan Atlas in Tunisia can be defined by two principal models: (1) The first model emphasizes a general SW–NE geological structure in the North forming successive and parallel bands (the Tellian zone, the diapir zone) and the central Atlas, which are cut by the southern Atlas ranges located within a NW–SE corridor. These zones are bordered to the East by the “North–South Axis”. (2) The second model defines the Tunisian Atlas in terms of an E–W strike-slip corridor, which initially controls the sedimentary facies distribution during the Meso-Cenozoïc, and which then generates elongate en echelon folds in the sedimentary cover by dextral shearing.In this study, we aim to show that the Saharan Atlas in Tunisia appears today as a triangular megablock, that we call the Tunisian Block (TB), bounded by three structural trends (N–S, SW–NE and NW–SE) belonging to the African strike-slip fault network: (1) The eastern boundary appears as a complex faulted and folded corridor limiting the folded zone of the central Atlas in the West and the depressed zone of the Sahel in the East: it corresponds to the “North–South Axis” as defined classically in the literature. (2) The southern boundary also corresponds to a faulted belt (Gafsa–Negrine-Tozeur corridor), which cuts off the continuation of the North–South axis southward into the Gabès region; it corresponds to the Southern Saharan Atlas, delimited by the Gafsa fault in the North and the Negrine-Tozeur fault in the South. (3) The northern boundary, trending SW–NE, appears rather in the form of a reverse tectonic bundle, facing SE or S (oblique convergence), whose major feature corresponds to the El Alia-Téboursouk fault. This northern boundary cuts across and delimits the N–S corridor towards the North, in such a way that its extension is limited at both extremities. Finally, the inner part of the TB actually corresponds to a mosaic of second-order blocks, each of which contains an arrangement of widely spaced SW–NE trending anticlines forming the main relief separated by vast plains very often occupied by sebkhas. The paleogeographic and structural evolution of this region during the Mesozoic and Palaeogene shows that the TB, along with its limits as defined here, developed an increasingly distinct identity at a very early stage, being characterized by an extensive and/or transtensive tectonic regime. Finally, the Tunisian Atlas Chain defines a triangular domain that owes its origin and particular character precisely because of the paleogeographic and structural history of this paleoblock. The boundaries of this paleoblock remain mobile, thus tectonically controlling the geometry and morphology of a typical intracontinental basin. The extension directions and the frequent changes of stress regime (or rotations) are related to the existence of two active basins: the strike-slip margin of the western branch of Tethys and the Mesogea oceanic basin, with tectonic activity becoming alternately dominant in one or other of the basins at different times. In this context, the Tunisian basin is characterized by rhythmic sedimentation, composed of a succession of filling sequences linked to the continuing tectonic instability of the sedimentary floor associated with two major crises: one at the end of the Aptian and the other at the end of the Ypresian. The vertical movements related to the extension and/or transtension of the blocks is accentuated by Triassic salt tectonics, giving rise to linear (salt axes) or point (salt domes) structures that lead to the formation of shoal zones during development of the basin, thus enhancing the vertical tectonics. The diapirism developed slowly and gradually from late Triassic through to Langhian times, leading to numerous sedimentary wedges on the flanks of the structures. The uprise of the diapirs exhibits three pauses corresponding to the end-Aptian, end-Ypresian and pre-Burdigalian. The vertical tectonics is characterized by abundant drape folds giving rise to an extensional fault-related folding and strike-slip/dip-slip faults creating frequent unconformities that are nevertheless always localized.Finally, the folded chain results from the structural inversion of this paleoblock from Tortonian times onward. We can only account for the various folds-axis directions in the context of an intracontinental chain where the pre-existing major vertical faults are able to develop on the surface as draped-folds in a transpressive regime by the local reorientation of stresses in crustal-scale faults. In detail, the structures produced by this vertical tectonic activity, which are profoundly controlled by inheritance, display a highly original style at very shallow levels in the crust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号