首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   19篇
  国内免费   5篇
测绘学   8篇
大气科学   32篇
地球物理   150篇
地质学   164篇
海洋学   35篇
天文学   50篇
综合类   1篇
自然地理   16篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   8篇
  2014年   16篇
  2013年   15篇
  2012年   7篇
  2011年   18篇
  2010年   16篇
  2009年   24篇
  2008年   22篇
  2007年   12篇
  2006年   14篇
  2005年   17篇
  2004年   15篇
  2003年   9篇
  2002年   10篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   19篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   13篇
  1982年   8篇
  1981年   12篇
  1980年   9篇
  1979年   13篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   6篇
  1974年   6篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1951年   1篇
排序方式: 共有456条查询结果,搜索用时 79 毫秒
251.
Hydrogenetic ferromanganese crusts (Fe-Mn crusts) provide a secular record of the variations of seawater composition responding to changes in ocean circulation and erosion processes. In this respect, the acquisition of an absolute and reliable chronology in Fe-Mn crusts is a prerequisite. Here we combine four different and complementary chronometers (10Be, 230Thex, 230Thex/232Th, 234U/238U) in a Fe-Mn crust dredged at ∼2000 m depth in the east Atlantic to first establish a reliable chronology over the Quaternary period. Then, we use EDS chemical analysis to look for correlation between major element chemistry and climate changes. (230Thex), (230Thex/232Th), and Be data give very consistent growth rates. In particular, the good match between (230Thex) and (230Thex/232Th) data indicates that at the location of crust 121DK, 230Th and 232Th fluxes in the water column change simultaneously and suggests that the normalization of 230Thex to 232Th makes (230Thex/232Th) a better chronometer. Our best-fit model suggests that crust 121DK experienced changes in growth rates at ∼122 and 312 ka and a growth with a constant 230Th initial flux. This chronology returns an age of 680 ka for the uppermost 1.5 mm. The (234U/238U) depth profile, however, was clearly affected by diffusion of 234U in the porous crust and can therefore not be used to derive a reliable chronology. One part of the crust seems isolated from pore water diffusion and can be physically recognized as a zone of very small porosity. On the basis of the (230Thex/232Th) chronology, major element chemistry is shown to be linked to climate change. Mn/Fe variations compare well with those in a Fe-Mn crust from the Pacific, showing systematic maxima during glacial stages 2 and 4. High Mn/Fe are tentatively interpreted to reflect expansion of the oxygen minimum zone during glacial periods, resulting from higher bioproductivity. In addition we note that the surface (230Th/232Th) activity ratio of crust 121DK is entirely consistent with advection of deep water from the western toward the eastern Atlantic basin.  相似文献   
252.
Beached seabirds, mainly common guillemots Uria aalge, were collected on the Belgian coast during winter from 1990 to 1995. Concentrations of total and organic mercury, and of organochlorines (PCBs and pesticides) were determined in muscle, liver and kidney. They were high compared to summer data (up to one order of magnitude), and increased during winter. This increase is not due to changes of total body weight nor polar lipid content, and thus reflects an actual increase of the seabirds' contamination while wintering in the southern North Sea. The observed annual cycle can be understood by assuming differences in prey contamination: higher during winter in the southern North Sea ecosystem than during summer in the Atlantic water ecosystem.  相似文献   
253.
On Ile de Groix, Variscan metamorphic former tholeiitic and alkaline basalts occur as glaucophane-eclogites, blueschists and greenschists in isolated lenses and layers within metapelites. Whole-rock '18OSMOW values of the metabasites show limited variations (10.4-12.0‰) and no systematic differences among rock types and metamorphic grades. This provides no argument for large-scale blueschist-to-greenschist transformation driven by infiltration of externally derived fluids. Metamorphic mineralogical changes should have been triggered by internal fluids. Element variations in interlayered blue- and greenschists can be attributed to magmatic fractionation. Assemblages with garnet, clinopyroxene and glaucophane of a high-pressure/low-temperature (HP-LT) metamorphism M1, and NaCa-amphiboles (barroisite, magnesiohornblende, actinolite) of a medium-pressure/medium-temperature metamorphism M2 crystallized during deformation D1. Detailed core-rim zonation profiles display increasing and then decreasing AlIV in glaucophane of M1. NaCa-amphiboles of M2, mantling glaucophane and crystallized in porphyroblasts, show first increasing, then decreasing, AlIV and AlVI. Empirically calibrated thermobarometers allowed P-T path reconstructions. In glaucophane-eclogites of a metamorphic zone I, a prograde evolution to M1 peak conditions at 400-500°C/10-12 kbar was followed by a retrograde P-T path within the glaucophane stability field. The subsequent M2 evolution was again prograde up to >600°C at 8 kbar and then retrograde. Similarly, in metamorphic zones II and III, prograde and retrograde paths of M1 and M2 at lower maximal temperatures and pressures exist. The almost complete metamorphic cycle during M2 signalizes that the HP-LT rocks escaped from an early erosion by a moderate second burial event and explains the long-lasting slow uplift with low average cooling rates.  相似文献   
254.
255.
In southern Tibet, crustal thickening due to the India-Asia collision has led to the formation of two granite belts. One is located at the southern edge of the accretionary wedge of Tethyan sedimentary rocks, close to the contact with basement gneisses of the Tibetan slab. The other is found within the wedge itself, close to the Kangmar thrust trace. Available ages suggest that the granites appeared first in the southern belt and then in the Kangmar belt. This sequence seems to violate the chronology of thrusting. Another feature of the Himalayas is that melting started only about 20 Ma after the onset of thickening, which is much less than the thermal time constant of thick crust. We give a thermal model, based on the assumption of conductive heat transfer, which explains these features. The model relies on the geometry of a sedimentary accretionary wedge bounded by low-angle thrust faults and on the existence of a thermal conductivity contrast between old basement and young sedimentary rocks. The wedge of sedimentary rocks acts as an insulating cap and its southern edge heats up along the contact with basement rocks. On a horizontal cross-section, there is a temperature maximum along this southern edge, which explains why melting starts there. The early thermal evolution is sensitive to local conditions and granites first appear in the vicinity of the most radiogenic parts of the basement. The distribution of granites in space and time is seemingly random, reflecting different melting events in different radiogenic environments in the heterogeneous basement. This model predicts a relationship between radioactivity and age which is compatible with available data. The results emphasize that there are large horizontal temperature variations across a thickened region and that granite ages are not related simply to the timing of tectonic phases.  相似文献   
256.
A review is given of suspended sediment dynamics in macrotidal regimes using examples of estuaries situated along the French coast of the English Channel. Characteristic features of estuarine turbidity maxima are described over a range of time-scales, which includes semidiurnal and neap-spring tidal cycles, and seasonal fluctuations of river discharge. The present behaviour of the fluvial sediment influx within these systems is described, taking into account the geological history of estuarine infilling.  相似文献   
257.
258.
Magmatic crystallization depends on the kinetics of nucleation and crystal growth. It occurs over a region of finite thickness called the crystallization interval, which moves into uncrystallized magma. We present a dimensional analysis which allows a simple understanding of the crystallization characteristics. We use scales for the rates of nucleation and crystal growth, denoted by I m and Y m respectively. The crystallization time-scale c and length-scale d c are given by (Y m 3 /I m )–1/4 and (·) m 1/2 respectively, where is thermal diffusivity. The thickness of the crystallization interval is proportional to this length-scale. The scale for crystal sizes is given by (Y m /I m )1/4. We use numerical calculations to derive dimensionless relationships between all the parameters of interest: position of the crystallization front versus time, thickness of the crystallization interval versus time, crystal size versus distance to the margin, temperature versus time. We assess the sensitivity of the results to the form of the kinetic functions. The form of the growth function has little influence on the crystallization behaviour, contrary to that of the nucleation function. This shows that nucleation is the critical process. In natural cases, magmatic crystallization proceeds in continously evolving conditions. Local scaling laws apply, with time and size given by =(Y 3/I)–1/4 and R=(Y/I)1/4, where Y and I are the rates at which crystal are grown and nucleated locally. is the time to achieve crystallization and R the mean crystal size. We use these laws together with petrological observations to infer the in-situ values of the rates of nucleation and growth. Two crystallization regimes are defined. In the highly transient conditions prevailing at the margins of basaltic intrusions, undercoolings are high and the peak nucleation and growth rates must be close to 1cm–3· –1 and 10–7cm/s, in good agreement with laboratory measurements. In quasi-equilibrium conditions prevailing in the interior of large intrusions, undercoolings are small. We find ranges of 10–7 to 10–3 cm–3 s–1 and of 10–10 to 10–8cm/s for the local rates of nucleation and growth respectively.  相似文献   
259.
The contribution of radiative and turbulent processes to nocturnal atmospheric cooling has been studied using the experimental data of the ECLATS experiment which took place in the African Sahel; the radiative and turbulent fluxes were determined taking thermal advection into account. The turbulent cooling rate is predominant; it decreases strongly with altitude at the beginning of the night, which is the main cause of inversion formation.  相似文献   
260.
U(Th)Pb systematics and ages of Himalayan leucogranites, South Tibet   总被引:5,自引:0,他引:5  
The age and origin of five leucogranites from the High and Tethys Himalaya, and two country-rock gneisses were investigated by UPb dating of zircon fractions and single grains, and fractions of monazite. Additionally, ThU concentrations in whole rock powders and isotopic compositions of Pb in leached K-feldspars were determined. Monazites yield ages of 16.8 ± 0.6 m.y. for the Nialam migmatite-granite, 15.1 ± 0.5 m.y. for the Lhagoi Kangri granite, 14.3 ± 0.6 m.y. for a granite from Mt. Everest, and 9.8 ± 0.7 m.y. and 9.2 ± 0.9 m.y. for two varieties of the Maja granite. These data, together with monazite ages of 21.9 ± 0.2 and 24.0 ± 0.4 m.y., determined earlier on the Makalu granite [1], substantiate a period of intracontinental granite emplacements from 24 to 9 m.y. ago, i.e. from uppermost Oligocene to late Miocene times. Such a period of plutonic activity is consistent with the view that all these granites result from intracrustal melting following the collision of India with Eurasia. Furthermore, the individual ages, together with structural relationships between granites and country rocks suggest that granite formation and tectono-metamorphism occurred as alternating and strongly related processes with a periodicity of 7 to 9 m.y. Inherited lead components, present in all granite zircons point to large proportions of Precambrian material in the magma source regions, up to 2200 m.y. old.ThU systematics between monazite and country rocks indicate that U has been leached from most of the granites after crystallisation of monazite.Zircon dating of the Kangmar granite gneiss, which occurs in a window through the Tethys Himalayan sediments, shows that this pluton, transformed to a gneiss during the Alpine orogeny, crystallised in lowermost Palaeozoic times 562 ± 4 m.y. ago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号