首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1848篇
  免费   118篇
  国内免费   30篇
测绘学   74篇
大气科学   146篇
地球物理   383篇
地质学   672篇
海洋学   178篇
天文学   332篇
综合类   6篇
自然地理   205篇
  2023年   12篇
  2022年   7篇
  2021年   38篇
  2020年   47篇
  2019年   65篇
  2018年   70篇
  2017年   74篇
  2016年   93篇
  2015年   75篇
  2014年   75篇
  2013年   145篇
  2012年   82篇
  2011年   113篇
  2010年   96篇
  2009年   118篇
  2008年   97篇
  2007年   95篇
  2006年   85篇
  2005年   60篇
  2004年   66篇
  2003年   54篇
  2002年   40篇
  2001年   33篇
  2000年   39篇
  1999年   28篇
  1998年   28篇
  1997年   15篇
  1996年   22篇
  1995年   16篇
  1994年   13篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   13篇
  1989年   13篇
  1988年   9篇
  1987年   8篇
  1986年   4篇
  1985年   14篇
  1984年   15篇
  1983年   13篇
  1982年   13篇
  1981年   9篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1996条查询结果,搜索用时 31 毫秒
341.
Decreased salinity and submarine light associated with hurricanes of 2004?C2005 impacted seagrass habitats in the Florida coastal zone. A combination of salinities ??20 and light attenuation ??1.5?m?1 resulting from the freshwater discharge in 2005 were among the drivers for a widespread decrease in the coverage and biomass of Syringodium filiforme (manatee grass) in 2006. These observations provided an opportunity to develop and apply a modeling framework to simulate responses of S. filiforme to variable water quality. The framework connects water column variables to field monitoring of seagrass abundance and salinity growth response experiments. The base model was calibrated with macrophyte abundance observed in southern Indian River Lagoon (IRL) from 2002 to 2007 and tested against shoot data from a different time (1997?C2002) and nearby location in the IRL. Model shoot biomass (gC?m?2) was similar to field observations (r 2?=?0.70) while responding to monthly seasonal fluctuations in salinity and light throughout the 6-year simulations. Field and model results indicated that S. filiforme growth and survival were sensitive to, and increased with, rising salinity throughout 2007. This modeling study emphasizes that discharge, salinity, and submarine light are inter-dependent variables affecting South Florida seagrass habitats on seasonal to inter-annual time scales.  相似文献   
342.
Conservationists need to know the degree of habitat fidelity for species of conservation concern. Stable Isotope Analysis in R quantified the contribution of terrestrial vs. saltmarsh primary production sources to terrestrial passerine food webs from four habitats of Sapelo Island, Georgia (USA), saltmarsh, maritime scrub–shrub, maritime broadleaf (oak), and maritime narrowleaf (pine) forests, using δ 13C and δ 15N. Models suggested Northern Parula (Parula americana) in oak forests, White-eyed Vireos (Vireo griseus) in shrub, and Brown-headed Nuthatches (Sitta pusilla) in pine forests derived most of their food from habitats they occupied (53–100%). Saltmarsh provided 47–94% of Painted Bunting (Passerina ciris) food sources, supporting previous findings by Springborn and Meyers (2005). Thus, Painted Bunting conservation in the Southeastern USA should focus on Springborn and Meyers’ suggestion of maritime scrub–shrub habitat and forests with <75% canopy, >50% ground cover, and patches of shrubs that are within 700 m of saltmarsh.  相似文献   
343.
Numerical models are essential tools in fully understanding the fate of injected CO2 for commercial-scale sequestration projects and should be included in the life cycle of a project. Common practice involves modeling the behavior of CO2 during and after injection using site-specific reservoir and caprock properties. Little has been done to systematically evaluate and compare the effects of a broad but realistic range of reservoir and caprock properties on potential CO2 leakage through caprocks. This effort requires sampling the physically measurable range of caprock and reservoir properties, and performing numerical simulations of CO2 migration and leakage. In this study, factors affecting CO2 leakage through intact caprocks are identified. Their physical ranges are determined from the literature from various field sites. A quasi-Monte Carlo sampling approach is used such that the full range of caprock and reservoir properties can be evaluated without bias and redundant simulations. For each set of sampled properties, the migration of injected CO2 is simulated for up to 200 years using the water–salt–CO2 operational mode of the STOMP simulator. Preliminary results show that critical factors determining CO2 leakage rate through caprocks are, in decreasing order of significance, the caprock thickness, caprock permeability, reservoir permeability, caprock porosity, and reservoir porosity. This study provides a function for prediction of potential CO2 leakage risk due to permeation of intact caprock and identifies a range of acceptable seal thicknesses and permeability for sequestration projects. The study includes an evaluation of the dependence of CO2 injectivity on reservoir properties.  相似文献   
344.
Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. However, little is known about the effects of climate change on alpine stream biota, especially invertebrates. Here, we show a strong linkage between regional climate change and the fundamental niche of a rare aquatic invertebrate—the meltwater stonefly Lednia tumana—endemic to Waterton-Glacier International Peace Park, Canada and USA. L. tumana has been petitioned for listing under the U.S. Endangered Species Act due to climate-change-induced glacier loss, yet little is known on specifically how climate impacts may threaten this rare species and many other enigmatic alpine aquatic species worldwide. During 14 years of research, we documented that L. tumana inhabits a narrow distribution, restricted to short sections (~500 m) of cold, alpine streams directly below glaciers, permanent snowfields, and springs. Our simulation models suggest that climate change threatens the potential future distribution of these sensitive habitats and the persistence of L. tumana through the loss of glaciers and snowfields. Mountaintop aquatic invertebrates are ideal early warning indicators of climate warming in mountain ecosystems. Research on alpine invertebrates is urgently needed to avoid extinctions and ecosystem change.  相似文献   
345.
This study examines spatially referenced perceived landscape values and climate change risks collected through public participation geographic information systems for potential use in climate change planning. Using survey data from the Southern Fleurieu Peninsula, South Australia, we present a method for identifying perceived landscape values and climate change risks to describe and quantify their spatial associations. Two spatial data models??vector and raster??and two analytical methods??Jaccard coefficients and spatial cross-correlations were used to describe the spatial associations. Results indicate that perceptions of climate change risk are driven, in part, by the values people assign or hold for places on the landscape. Biodiversity and intrinsic landscape values have strong spatial association with biodiversity loss risk while recreation values have strong spatial association with riparian flooding, sea-level rise and wave action risks. Other landscape values show weak to no spatial association with perceived climate change risks. The methodology described in this research provides a mechanism for government agencies to develop place-based adaptation strategies based on these associations.  相似文献   
346.
In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rural livelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rural livelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.  相似文献   
347.
To understand the spatial variation in concentrations and compositions of organic micropollutants in marine plastic debris and their sources, we analyzed plastic fragments (∼10 mm) from the open ocean and from remote and urban beaches. Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), dichloro-diphenyl-trichloroethane and its metabolites (DDTs), polybrominated diphenyl ethers (PBDEs), alkylphenols and bisphenol A were detected in the fragments at concentrations from 1 to 10,000 ng/g. Concentrations showed large piece-to-piece variability. Hydrophobic organic compounds such as PCBs and PAHs were sorbed from seawater to the plastic fragments. PCBs are most probably derived from legacy pollution. PAHs showed a petrogenic signature, suggesting the sorption of PAHs from oil slicks. Nonylphenol, bisphenol A, and PBDEs came mainly from additives and were detected at high concentrations in some fragments both from remote and urban beaches and the open ocean.  相似文献   
348.
Considerable debate surrounds the sources of oxygenated polybrominated diphenyl ethers (O-PBDEs) in wildlife as to whether they are naturally produced or result from anthropogenic industrial activities. Natural radiocarbon (14C) abundance has proven to be a powerful tool to address this problem as recently biosynthesized compounds contain contemporary (i.e. modern) amounts of atmospheric radiocarbon; whereas industrial chemicals, mostly produced from fossil fuels, contain no detectable 14C. However, few compounds isolated from organisms have been analyzed for their radiocarbon content. To provide a baseline, we analyzed the 14C content of four O-PBDEs. These compounds, 6-OH-BDE47, 2′-OH-BDE68, 2′,6-diOH-BDE159, and a recently identified compound, 2′-MeO-6-OH-BDE120, were isolated from the tropical marine sponges Dysidea granulosa and Lendenfeldia dendyi. The modern radiocarbon content of their chemical structures (i.e. diphenyl ethers, C12H22O) indicates that they are naturally produced. This adds to a growing baseline on, at least, the sources of these unusual compounds.  相似文献   
349.
Measurements from recently installed 5 MHz high-frequency radar (CODAR) stations south of Point Arena, California, are used to describe surface current patterns during the upwelling season (June-August 2007). The systems provide hourly current maps on a 5-km grid, covering a region from approximately 10 to 150 km offshore (the continental shelf into the deep ocean). These HF-radar observations provide an unprecedented view of circulation in this “coastal transition zone”, between the wind-driven circulation over the shelf and the California Current circulation offshore. Circulation patterns include: (1) bifurcation of the coastal upwelling jet downstream of Point Arena into an along-shelf (down-coast) branch and an offshore branch, and (2) a large-scale anticyclonic meander that often develops into an eddy-like recirculation south of the bifurcation. The “recirculation” feature extends well offshore, with surface currents 50-100 km from the coast consistently opposing the wind stress. The spatial and temporal evolution of the surface current features during upwelling events affects surface transport from Point Arena to areas in the south, increasing the travel time of a substantial fraction of newly upwelled water from a few days to roughly two weeks. Thus, surface currents even far offshore influence coastal transport of nutrients, phytoplankton and larvae on ecologically relevant timescales, with resultant connectivity patterns very different than implied by a simple examination of the mean flow.  相似文献   
350.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号