首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6418篇
  免费   367篇
  国内免费   31篇
测绘学   170篇
大气科学   700篇
地球物理   1692篇
地质学   2533篇
海洋学   347篇
天文学   1074篇
综合类   28篇
自然地理   272篇
  2023年   32篇
  2022年   48篇
  2021年   124篇
  2020年   142篇
  2019年   104篇
  2018年   305篇
  2017年   319篇
  2016年   417篇
  2015年   300篇
  2014年   362篇
  2013年   511篇
  2012年   405篇
  2011年   371篇
  2010年   347篇
  2009年   367篇
  2008年   248篇
  2007年   202篇
  2006年   191篇
  2005年   153篇
  2004年   163篇
  2003年   126篇
  2002年   126篇
  2001年   101篇
  2000年   87篇
  1999年   73篇
  1998年   75篇
  1997年   99篇
  1996年   57篇
  1995年   70篇
  1994年   68篇
  1993年   44篇
  1992年   30篇
  1991年   36篇
  1990年   60篇
  1989年   28篇
  1988年   21篇
  1987年   43篇
  1986年   28篇
  1985年   34篇
  1984年   41篇
  1983年   31篇
  1982年   34篇
  1981年   40篇
  1980年   19篇
  1979年   25篇
  1978年   20篇
  1977年   23篇
  1975年   17篇
  1974年   17篇
  1973年   21篇
排序方式: 共有6816条查询结果,搜索用时 15 毫秒
221.
By incorporating the fabric effect and Lode’s angle dependence into the Mohr–Coulomb failure criterion, a strength criterion for cross-anisotropic sand under general stress conditions was proposed. The obtained criterion has only three material parameters which can be specified by conventional triaxial tests. The formula to calculate the friction angle under any loading direction and intermediate principal stress ratio condition was deduced, and the influence of the degree of the cross-anisotropy was quantified. The friction angles of sand in triaxial, true triaxial, and hollow cylinder torsional shear tests were obtained, and a parametric analysis was used to detect the varying characteristics. The friction angle becomes smaller when the major principal stress changes from perpendicular to parallel to the bedding plane. The loading direction and intermediate principal stress ratio are unrelated in true triaxial tests, and their influences on the friction angle can be well captured by the proposed criterion. In hollow cylinder torsional shear tests with the same internal and external pressures, the loading direction and intermediate principal stress ratio are related. This property results in a lower friction angle in the hollow cylinder torsional shear test than that in the true triaxial test under the same intermediate principal stress ratio condition. By comparing the calculated friction angle with the experimental results under various loading conditions (e.g., triaxial, true triaxial, and hollow cylinder torsional shear test), the proposed criterion was verified to be able to characterize the shear strength of cross-anisotropic sand under general stress conditions.  相似文献   
222.
223.
224.
Numerical representations of a target reservoir can help to assess the potential of different development plans. To be as predictive as possible, these representations or models must reproduce the data (static, dynamic) collected on the field. However, constraining reservoir models to dynamic data – the history-matching process – can be very time consuming. Many uncertain parameters need to be taken into account, such as the spatial distribution of petrophysical properties. This distribution is mostly unknown and usually represented by millions of values populating the reservoir grid. Dedicated parameterization techniques make it possible to investigate many spatial distributions from a small number of parameters. The efficiency of the matching process can be improved from the perturbation of specific regions of the reservoir. Distinct approaches can be considered to define such regions. For instance, one can refer to streamlines. The leading idea is to identify areas that influence the production behavior where the data are poorly reproduced. Here, we propose alternative methods based on connectivity analysis to easily provide approximate influence areas for any fluid-flow simulation. The reservoir is viewed as a set of nodes connected by weighted links that characterize the distance between two nodes. The path between nodes (or grid blocks) with the lowest cumulative weight yields an approximate flow path used to define influence areas. The potential of the approach is demonstrated on the basis of 2D synthetic cases for the joint integration of production and 4D saturation data, considering several formulations for the weights attributed to the links.  相似文献   
225.
A generic framework for the computation of derivative information required for gradient-based optimization using sequentially coupled subsurface simulation models is presented. The proposed approach allows for the computation of any derivative information with no modification of the mathematical framework. It only requires the forward model Jacobians and the objective function to be appropriately defined. The flexibility of the framework is demonstrated by its application in different reservoir management studies. The performance of the gradient computation strategy is demonstrated in a synthetic water-flooding model, where the forward model is constructed based on a sequentially coupled flow-transport system. The methodology is illustrated for a synthetic model, with different types of applications of data assimilation and life-cycle optimization. Results are compared with the classical fully coupled (FIM) forward simulation. Based on the presented numerical examples, it is demonstrated how, without any modifications of the basic framework, the solution of gradient-based optimization models can be obtained for any given set of coupled equations. The sequential derivative computation methods deliver similar results compared to FIM methods, while being computationally more efficient.  相似文献   
226.
International Journal of Earth Sciences - In this study, we report U–Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons...  相似文献   
227.
International Journal of Earth Sciences - The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to...  相似文献   
228.
Due to its ecological context, the Toulon bay represents a site of scientific interest to study temporal plankton distribution, particularly pico- and nanophytoplankton dynamics. A monthly monitoring was performed during a two-year cycle (October 2013–December 2015) at two coupled sampling sites, referred to as Little and Large bays, which had different morphometric characteristics and human pressures. Flow cytometry analyses highlighted the fact that pico- and nanophytoplankton were more abundant in the eutrophic Little bay. Furthermore, it evidenced two community structures across the Toulon bays: at times, a co-dominance of picoeukaryotes, nanoeukaryotes, Synechococcus 1-like cells and Prochlorococcus-like cells was found, and at other times, a Synechococcus 1-like dominated community existed. The alternation of one structure or the other can be explained by a combined action of temperature regime, nutrient conditions and degree of contamination. This study showed that pico- and nanophytoplankton dynamics were mainly driven by temperature in both sites, as in other temperate Mediterranean regions. Thus, the community was mainly composed of picoeukaryotes and Prochlorococcus-like cells in the winter (<?15 °C), while it was dominated by Synechococcus 1-like cells in the summer (>?20 °C). Additionally, the multiple human stressors in the Little bay seemed to affect the increase in abundance of Synechococcus 1-like cells as they were preferentially observed in the Large bay.  相似文献   
229.
Given its geological and climatic conditions and its rugged orography, Asturias is one of the most landslide prone areas in the North of Spain. Most of the landslides occur during intense rainfall episodes. Thus, precipitation is considered the main triggering factor in the study area, reaching average annual values of 960 mm. Two main precipitation patterns are frequent: (i) long-lasting periods of moderate rainfall during autumn and winter and (ii) heavy short rainfall episodes during spring and early summer. In the present work, soil moisture conditions in the locations of 84 landslides are analysed during two rainfall episodes, which represent the most common precipitation patterns: October–November 2008 and June 2010. Empirical data allowed the definition of available water capacity percentages of 99–100% as critical soil moisture conditions for the landslide triggering. Intensity-duration rainfall thresholds were calculated for each episode, considering the periods with sustained high soil moisture levels before the occurrence of each analysed landslide event. For this purpose, data from daily water balance models and weather stations were used. An inverse relationship between the duration of the precipitation and its intensity, consistent with published intensity-duration thresholds, was observed, showing relevant seasonal differences.  相似文献   
230.
Rockfalls strongly influence the evolution of steep rocky landscapes and represent a significant hazard in mountainous areas. Defining the most probable future rockfall source areas is of primary importance for both geomorphological investigations and hazard assessment. Thus, a need exists to understand which areas of a steep cliff are more likely to be affected by a rockfall. An important analytical gap exists between regional rockfall susceptibility studies and block-specific geomechanical calculations. Here we present methods for quantifying rockfall susceptibility at the cliff scale, which is suitable for sub-regional hazard assessment (hundreds to thousands of square meters). Our methods use three-dimensional point clouds acquired by terrestrial laser scanning to quantify the fracture patterns and compute failure mechanisms for planar, wedge, and toppling failures on vertical and overhanging rock walls. As a part of this work, we developed a rockfall susceptibility index for each type of failure mechanism according to the interaction between the discontinuities and the local cliff orientation. The susceptibility for slope parallel exfoliation-type failures, which are generally hard to identify, is partly captured by planar and toppling susceptibility indexes. We tested the methods for detecting the most susceptible rockfall source areas on two famously steep landscapes, Yosemite Valley (California, USA) and the Drus in the Mont-Blanc massif (France). Our rockfall susceptibility models show good correspondence with active rockfall sources. The methods offer new tools for investigating rockfall hazard and improving our understanding of rockfall processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号