首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1286篇
  免费   63篇
  国内免费   18篇
测绘学   62篇
大气科学   103篇
地球物理   327篇
地质学   363篇
海洋学   89篇
天文学   285篇
综合类   2篇
自然地理   136篇
  2023年   1篇
  2022年   1篇
  2021年   32篇
  2020年   31篇
  2019年   38篇
  2018年   51篇
  2017年   36篇
  2016年   47篇
  2015年   49篇
  2014年   48篇
  2013年   76篇
  2012年   61篇
  2011年   68篇
  2010年   54篇
  2009年   84篇
  2008年   66篇
  2007年   64篇
  2006年   75篇
  2005年   68篇
  2004年   67篇
  2003年   55篇
  2002年   52篇
  2001年   43篇
  2000年   27篇
  1999年   34篇
  1998年   31篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1367条查询结果,搜索用时 15 毫秒
91.
Transferring large volumes of information from one location to potentially many others that are geographically distributed and across varying networks is still prevalent in modern scientific data systems. This is despite the movement to push computation to the data and to reduce data movement needed to compute answers to challenging scientific problems, to disseminate information to the scientific community, and to acquire data for curation and enrichment. Because of this, it is imperative that decisions made regarding data movement systems and architectures be backed by both analytical rigor, and also by empirical evidence and measurement. The purpose of this study is to expand on the work performed by our research team over the last decade and to take a fresh look at the evaluation of multiple topical data transfer technologies in use cases derived from data-intensive scientific systems and applications in the areas of Earth science. We report on the evaluation of a set of data movement technologies against a set of empirically derived comparison dimensions. Based on this evaluation, we make recommendations towards the selection of appropriate data movement technologies in scientific applications and scenarios.  相似文献   
92.
Tsunami risk mitigation programs often include iconic evacuation signage to direct locals and visitors to safety during a tsunami event. This paper examines sign placement in Seaside, Oregon, from a visibility perspective. It leverages existing visibility analysis methodologies characterize the visibility of the community’s evacuation signage and reveals patterns in the viewable landscape. Additionally, we develop a topologically 3D approach to visibility analysis using raw LiDAR datasets. This applied work situates a discussion on existing patterns of visibility, how to improve existing signage placement, 2D and 3D representation of landscape, and the importance of visibility analysis. This work aims to stimulate discussion and development of hazard research that incorporates a visibility perspective.  相似文献   
93.
Reports of large Ca isotope fractionations between trees and soils prompted this study of a Boreal forest ecosystem near La Ronge, Saskatchewan, to improve understanding of this phenomenon. The results on five tree species (black spruce, trembling aspen, white spruce, jack pine, balsam poplar) confirm that nutrient Ca uptake by plants favors the light isotopes, thus driving residual Ca in plant available soil pools towards enrichment in the heavy isotopes. Substantial within-tree fraction occurs in tissues formed along the transpiration stream, with low δ44Ca values in fine roots (2 mm), intermediate values in stemwood, and high values in foliage. Separation factors between different plant tissues are similar between species, but the initial fractionation step in the tips of the fine roots is species specific, and/or sensitive to the local soil environment. Soil water δ44Ca values appear to increase with depth to at least 35 cm below the top of the forest floor, which is close to the deepest level of fine roots. The heavy plant fractionated signature of Ca in the finely rooted upper soils filters downward where it is retained on ion exchange sites, leached into groundwater, and discharged into surface waters.The relationship between Ca uptake by tree fine roots and the pattern of δ44Ca enrichment with soil depth was modeled for two Ca pools: the forest floor (litter) and the underlying (upper B) mineral soil. Six study plots were investigated along two hillside toposequences trending upwards from a first order stream. We used allometric equations describing the Ca distribution in boreal tree species to calculate weighted average δ44Ca values for the stands in each plot and estimate Ca uptake rates. The δ44Ca value of precipitation was measured, and soil weathering signatures deduced, by acid leaching of lower B mineral soils. Steady state equations were used to derive a set of model Ca fluxes and fractionation factors for each plot. The model reproduces the increase in δ44Ca with depth found in forest floor and upper B soil waters. Transient model runs show that the forest Ca cycle is sensitive to changes in plant Ca uptake rate, such as would occur during ontogeny or disturbance. Accordingly, secular records of δ44Ca in tree ring cellulose have the potential to monitor changes in the forest Ca cycle through time, thus providing a new tool for evaluating natural and anthropogenic impacts on forest health. Another model run shows that by changing the size of the isotope fractionation factor and adjusting for differences in forest productivity, that the range in Ca isotope fractionation in forested ecosystems reported in the literature, thus far, is reproduced. As a quantitative tool, the Ca cycling model produces a reasonable set of relative Ca fluxes for the La Ronge site, consistent with Environment Canada’s measurements for wet deposition in the region and simulated Ca release from soil mineral weathering using the PROFILE model. But the sensitivity of the model is limited by the small range of fractionation observed in this boreal shield setting of ∼1‰, which limits accuracy. If the model were applied to a site with a greater range in δ44Ca values among the principal Ca fluxes, it is capable of producing robust and reliable estimations of Ca fluxes that are otherwise difficult to measure in forested ecosystems.  相似文献   
94.
95.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   
96.
The carbonate-carbon (CO2) content of forty-one geochemical reference samples has been determined by coulometric method following acid treatment of the sample for releasing CO2. The method is superior to the conventional methods in speed, accuracy, sensitivity, specificity, and the coverage of CO2 range. The results on NBS limestone samples agree well with the certified values. The precision of the method is 0.5 % r.s.d., and the practical detection limit is 10 ppm C.  相似文献   
97.
In this article, we document a detailed analytical characterisation of zircon M127, a homogeneous 12.7 carat gemstone from Ratnapura, Sri Lanka. Zircon M127 has TIMS‐determined mean U–Pb radiogenic isotopic ratios of 0.084743 ± 0.000027 for 206Pb/238U and 0.67676 ± 0.00023 for 207Pb/235U (weighted means, 2s uncertainties). Its 206Pb/238U age of 524.36 ± 0.16 Ma (95% confidence uncertainty) is concordant within the uncertainties of decay constants. The δ18O value (determined by laser fluorination) is 8.26 ± 0.06‰ VSMOW (2s), and the mean 176Hf/177Hf ratio (determined by solution ICP‐MS) is 0.282396 ± 0.000004 (2s). The SIMS‐determined δ7Li value is ?0.6 ± 0.9‰ (2s), with a mean mass fraction of 1.0 ± 0.1 μg g?1 Li (2s). Zircon M127 contains ~ 923 μg g?1 U. The moderate degree of radiation damage corresponds well with the time‐integrated self‐irradiation dose of 1.82 × 1018 alpha events per gram. This observation, and the (U–Th)/He age of 426 ± 7 Ma (2s), which is typical of unheated Sri Lankan zircon, enable us to exclude any thermal treatment. Zircon M127 is proposed as a reference material for the determination of zircon U–Pb ages by means of SIMS in combination with hafnium and stable isotope (oxygen and potentially also lithium) determination.  相似文献   
98.
Testing the fidelity of thermometers at ultrahigh temperatures   总被引:1,自引:0,他引:1  
A highly residual granulite facies rock (sample RG07‐21) from Lunnyj Island in the Rauer Group, East Antarctica, presents an opportunity to compare different approaches to constraining peak temperature in high‐grade metamorphic rocks. Sample RG07‐21 is a coarse‐grained pelitic migmatite composed of abundant garnet and orthopyroxene along with quartz, biotite, cordierite, and plagioclase with accessory rutile, ilmenite, zircon, and monazite. The inferred sequence of mineral growth is consistent with a clockwise pressure–temperature (PT) evolution when compared with a forward model (PT pseudosection) for the whole‐rock chemical composition. Peak metamorphic conditions are estimated at 9 ± 0.5 kbar and 910 ± 50°C based on conventional Al‐in‐orthopyroxene thermobarometry, Zr‐in‐rutile thermometry, and calculated compositional isopleths. U–Pb ages from zircon rims and neocrystallized monazite grains yield ages of c. 514 Ma, suggesting that crystallization of both minerals occurred towards the end of the youngest pervasive metamorphic episode in the region known as the Prydz Tectonic Event. The rare earth element compositions of zircon and garnet are consistent with equilibrium growth of these minerals in the presence of melt. When comparing the thermometry methods used in this study, it is apparent that the Al‐in‐orthopyroxene thermobarometer provides the most reliable estimate of peak conditions. There is a strong textural correlation between the temperatures obtained using the Zr‐in‐rutile thermometer––maximum temperatures are recorded by a single rutile grain included within orthopyroxene, whereas other grains included in garnet, orthopyroxene, quartz, and biotite yield a range of temperatures down to 820°C. Ti‐in‐zircon thermometry returns significantly lower temperature estimates of 678–841°C. Estimates at the upper end of this range are consistent with growth of zircon from crystallizing melt at temperatures close to the elevated (H2O undersaturated) solidus. Those estimates, significantly lower than the calculated temperature of this residual solidus, may reflect isolation of rutile from the effective equilibration volume leading to an activity of TiO2 that is lower than the assumed value of unity.  相似文献   
99.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   
100.
Sapphirine–quartz granulites from the Cocachacra region of the Arequipa Massif in southern Peru record early Neoproterozoic ultrahigh‐temperature metamorphism. Phase equilibrium modelling and zircon petrochronology are used to quantify timing and pressure–temperature (P–T) conditions of metamorphism. Modelling of three magnetite‐bearing sapphirine–quartz samples indicates peak temperatures of >950°C at ~0.7 GPa and a clockwise P–T evolution. Elevated concentrations of Al in orthopyroxene are also consistent with ultrahigh‐temperature conditions. Neoblastic zircon records ages of c. 1.0–0.9 Ga that are interpreted to record protracted ultrahigh‐temperature metamorphism. Th/U ratios of zircon of up to 100 reflect U‐depleted whole‐rock compositions. Concentrations of heavy rare earth elements in zircon do not show systematic trends with U–Pb age but do correlate with variable whole‐rock compositions. Very large positive Ce anomalies in zircon from two samples probably relate to strongly oxidizing conditions during neoblastic zircon crystallization. Low concentrations of Ti‐in‐zircon (<10 ppm) are interpreted to result from reduced titania activities due to the strongly oxidized nature of the granulites and the sequestration of titanium‐rich minerals away from the reaction volume. Whole‐rock compositions and oxidation state have a strong influence on the trace element composition of metamorphic zircon, which has implications for interpreting the geological significance of ages retrieved from zircon in oxidized metamorphic rocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号