首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1286篇
  免费   63篇
  国内免费   18篇
测绘学   62篇
大气科学   103篇
地球物理   327篇
地质学   363篇
海洋学   89篇
天文学   285篇
综合类   2篇
自然地理   136篇
  2023年   1篇
  2022年   1篇
  2021年   32篇
  2020年   31篇
  2019年   38篇
  2018年   51篇
  2017年   36篇
  2016年   47篇
  2015年   49篇
  2014年   48篇
  2013年   76篇
  2012年   61篇
  2011年   68篇
  2010年   54篇
  2009年   84篇
  2008年   66篇
  2007年   64篇
  2006年   75篇
  2005年   68篇
  2004年   67篇
  2003年   55篇
  2002年   52篇
  2001年   43篇
  2000年   27篇
  1999年   34篇
  1998年   31篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1367条查询结果,搜索用时 14 毫秒
1.
2.
Stable carbon isotope data that span part of the last glacial–interglacial transition (ca. 14-9 ka 14C BP; ca. 15–11 ka cal. BP), and which derive from organ-specific plant macrofossils recovered from two lake sediment profiles in the UK and one in Norway, are compared. The recorded temporal variations show similar trends, which, over a millennial time-scale appear to parallel the main drift in δ18O as determined for the GRIP ice-core. It is postulated that some smaller scale variations in the δ13C profiles may reflect the shorter term oscillations in δ18O values evident in the GRIP record, although this is less certain. Overall, however, the results suggest that stable carbon isotope measurements based on organ-specific terrestrial plant macrofossils may provide (i) a means for establishing correlations between terrestrial successions and (ii) additional paleoenvironmental information, as the apparent ‘shadowing’ of the GRIP record indicates a common forcing mechanism for both Greenland δ18O and northwest European δ13C variations. From the evidence available we suggest that the recorded δ13C variations reflect fluctuations in air temperature and/or changes in water vapour pressure in the atmosphere. © 1997 John Wiley & Sons, Ltd.  相似文献   
3.
Observations of currents aimed to study the flow near a spawning aggregation reef, Gladden Spit off the coast of Belize, reveal unusually strong currents on 19–20 October 2009 (the current speed was over 1?m?s?1, when the mean and standard deviation are 0.2?±?0.12?m?s?1). During this short time, the water level was raised by 60–70?cm above normal in one place, but lowered by 10–20?cm in another location just 2?km away. The temperature dropped by over 2°C within a few hours. Analyses of local and remote sensing data suggest that a rare combination of an offshore Caribbean cyclonic eddy, a short-lived local tropical storm, and a Spring tide, all occurred at the same time and creating a “perfect storm” condition that resulted in the unusual event. High-resolution simulations and momentum balance analysis demonstrate how the unique shape of the coral reef amplified the coastal current through nonlinear flow–topography interactions. The suggested mechanism for the water level change is different than the classical wind-driven storm surge process. The study has implications for the influence of external forcing on mixing processes and physical–biological interactions near coral reefs.  相似文献   
4.
The drought of summer 2018, which affected much of Northern Europe, resulted in low river flows, biodiversity loss and threats to water supplies. In some regions, like the Scottish Highlands, the summer drought followed two consecutive, anomalously dry, winter periods. Here, we examine how the drought, and its antecedent conditions, affected soil moisture, groundwater storage, and low flows in the Bruntland Burn; a sub-catchment of the Girnock Burn long-term observatory in the Scottish Cairngorm Mountains. Fifty years of rainfall-runoff observations and long-term modelling studies in the Girnock provided unique contextualisation of this extreme event in relation to more usual summer storage dynamics. Whilst summer precipitation in 2018 was only 63% of the long-term mean, soil moisture storage across much of the catchment were less than half of their summer average and seasonal groundwater levels were 0.5 m lower than normal. Hydrometric and isotopic observations showed that ~100 mm of river flows during the summer (May-Sept) were sustained almost entirely by groundwater drainage, representing ~30% of evapotranspiration that occurred over the same period. A key reason that the summer drought was so severe was because the preceding two winters were also dry and failed to adequately replenish catchment soil moisture and groundwater stores. As a result, the drought had the biggest catchment storage deficits for over a decade, and likely since 1975–1976. Despite this, recovery was rapid in autumn/winter 2018, with soil and groundwater stores returning to normal winter values, along with stream flows. The study emphasizes how long-term data from experimental sites are key to understanding the non-linear flux-storage interactions in catchments and the “memory effects” that govern the evolution of, and recovery from, droughts. This is invaluable both in terms of (a) giving insights into hydrological behaviours that will become more common water resource management problems in the future under climate change and (b) providing extreme data to challenge hydrological models.  相似文献   
5.
Topographic surveys on an inland parabolic sand dune over a six‐year period provide insight into the effects of diminishing local sand supply on dune stabilization. During the interval (2003–2009) sparse vegetation cover (Psoralea lanceolata) increased despite drier than normal moisture conditions and steady wind power during the growing season. Whereas these climatic conditions are typically ascribed to sustaining or increasing dune activity, here they coincide with stabilization. Through the use of geographic information system (GIS) analysis of volumetric changes it is shown that the increase of P. lanceolata can be attributed to the reduction of local sand supply from two blowouts along the arms of the parabolic dune during the six‐year period. These results show that climate is not the only control on dune activity in vegetated inland dunefields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
The spatial and temporal distribution of snow cover extent (SCE) and snow water equivalent (SWE) play vital roles in the hydrology of northern watersheds. We apply remotely sensed Special Sensor Microwave Imager (SSM/I) data from 1988 to 2007 to explore the relationships between snow distribution and the hydroclimatology of the Mackenzie River Basin (MRB) of Canada and its major sub-basins. The Environment Canada (EC) algorithm is adopted to retrieve the SWE from SSM/I data. Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow cover extent products (MOD10A2) are used to estimate the different thresholds of retrieved SWE from SSM/I to classify the land cover as snow or no snow for various sub-basins in the MRB. The sub-basins have varying topography and hence different thresholds that range from 10 mm to 30 mm SWE. The accuracy of snow cover mapping based on the combination of several thresholds for the different sub-basins reaches ≈ 90%. The northern basins are found to have stronger linear relationships between the date on which snow cover fraction (SCF) reaches 50% or when SWE reaches 50% and mean air temperatures, than the southern basins. Correlation coefficients between SCF, SWE, and hydroclimatological variables show the new SCF products from SSM/I perform better than SWE from SSM/I to analyze the relationships with the regional hydroclimatology. Statistical models relating SCF and SWE to runoff indicate that the SCF and SWE from EC algorithms are able to predict the discharge in the early snow ablation seasons in northern watersheds.  相似文献   
7.
River channel sediment dynamics are important in integrated catchment management because changes in channel morphology resulting from sediment transfer have important implications for many river functions. However, application of existing approaches that account for catchment‐scale sediment dynamics has been limited, largely due to the difficulty in obtaining data necessary to support them. It is within this context that this study develops a new, reach‐based, stream power balance approach for predicting river channel adjustment. The new approach, named ST:REAM (sediment transport: reach equilibrium assessment method), is based upon calculations of unit bed area stream power (ω) derived from remotely sensed slope, width and discharge datasets. ST:REAM applies a zonation algorithm to values of ω that are spaced every 50 m along the catchment network in order to divide the branches of the network up into relatively homogenous reaches. ST:REAM then compares each reach's ω value with the ω of its upstream neighbour in order to predict whether or not the reach is likely to be either erosion dominated or deposition dominated. The paper describes the application of ST:REAM to the River Taff in South Wales, UK. This test study demonstrated that ST:REAM can be rapidly applied using remotely sensed data that are available across many river catchments and that ST:REAM correctly predicted the status of 87.5% of sites within the Taff catchment that field observations had defined as being either erosion or deposition dominated. However, there are currently a number of factors that limit the usefulness of ST:REAM, including inconsistent performance and the need for additional, resource intensive, data to be collected to both calibrate the model and aid interpretation of its results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
The present work is a first comprehensive study of the trace-element composition and zoning in clinopyroxene- and amphibole-group minerals from carbonatites, incorporating samples from 14 localities worldwide (Afrikanda, Aley, Alnö, Blue River, Eden Lake, Huayangchuan, Murun, Oka, Ozernaya Varaka, Ozernyi, Paint Lake, Pinghe, Prairie Lake, Turiy Mys). The new electron-microprobe data presented here significantly extend the known compositional range of clinopyroxenes and amphiboles from carbonatites. These data confirm that calcic and sodic clinopyroxenes from carbonatites are not separated by a compositional gap, instead forming an arcuate trend from nearly pure diopside through intermediate aegirine–augite compositions confined to a limited range of CaFeSi2O6 contents (15–45 mol%) to aegirine with < 25 mol% of CaMgSi2O6 and a negligible proportion of CaFeSi2O6. A large set of LA-ICPMS data shows that the clinopyroxenes of different composition are characterized by relatively low levels of Cr, Co and Ni (≤ 40 ppm) and manifold variations in the concentration of trivalent lithophile and some incompatible elements (1–150 ppm Sc, 26–6870 ppm V, 5–550 ppm Sr, 90–2360 ppm Zr, and nil to 150 ppm REE), recorded in some cases within a single crystal. The relative contribution of clinopyroxenes to the whole-rock Rb, Nb, Ta, Th and U budget is negligible. The major-element compositional range of amphiboles spans from alkali- and Al-poor members (tremolite) to Na–Al-rich Mg- or, less commonly, Fe-dominant members (magnesiohastingsite, hastingsite and pargasite), to calcic–sodic, sodic and potassic–sodic compositions intermediate between magnesio-ferrikatophorite, richterite, magnesioriebeckite, ferri-nyböite and (potassic-)magnesio-arfvedsonite. In comparison with the clinopyroxenes, the amphiboles contain similar levels of tetravalent high-field-strength elements (Ti, Zr and Hf) and compatible transition elements (Cr, Co and Ni), but are capable of incorporating much higher concentrations of Sc and incompatible elements (up to 500 ppm Sc, 43 ppm Rb, 1470 ppm Sr, 1230 ppm Ba, 80 ppm Pb, 1070 ppm REE, 140 ppm Y, and 180 ppm Nb). In some carbonatites, amphiboles contribute as much as 25% of the Zr + Hf, 15% of the Sr and 35% of the Rb + Ba whole-rock budget. Both clinopyroxenes and amphiboles may also host a significant share (~ 10%) of the bulk heavy-REE content. Our trace-element data show that the partitioning of REE between clinopyroxene (and, in some samples, amphibole) and the melt is clearly bimodal and requires a revision of the existing models assuming single-site REE partitioning. Clinopyroxenes and amphiboles from carbonatites exhibit a diversity of zoning patterns that cannot be explained exclusively on the basis of crystal chemistry and relative compatibility of different trace-element in these minerals. Paragenetic analysis indicates that in most cases, the observed zoning patterns develop in response to removal of selected trace elements by phases co-precipitating with clinopyroxene and amphibole (especially magnetite, fluorapatite, phlogopite and pyrochlore). With the exception of magnesiohastingsite–richterite sample from Afrikanda, the invariability of trace-element ratios in the majority of zoned clinopyroxene and amphibole crystals implies that fluids are not involved in the development of zoning in these minerals. The implications of the new trace-element data for mineral exploration targeting REE, Nb and other types of carbonatite-hosted rare-metal mineralization are discussed.  相似文献   
9.
10.
Whilst all ecosystems must obey the second law of thermodynamics, these physical bounds and controls on ecosystem evolution and development are largely ignored across the ecohydrological literature. To unravel the importance of these underlying restraints on ecosystem form and function, and their power to inform our scientific understanding, we have calculated the entropy budget of a range of peat ecosystems. We hypothesize that less disturbed peatlands are ‘near equilibrium’ with respect to the second law of thermodynamics and thus respond to change by minimizing entropy production. This ‘near equilibrium’ state is best achieved by limiting evaporative losses. Alternatively, peatlands ‘far-from-equilibrium’ respond to a change in energy inputs by maximizing entropy production which is best achieved by increasing evapotranspiration. To test these alternatives this study examined the energy balance time series from seven peatlands across a disturbance gradient. We estimate the entropy budgets for each and determine how a change in net radiation (ΔRn) was transferred to a change in latent heat flux (ΔλE). The study showed that: (i) The transfer of net radiation to latent heat differed significantly between peatlands. One group transferred up to 64% of the change in net radiation to a change in latent heat flux, while the second transferred as little as 27%. (ii) Sites that transferred the most energy to latent heat flux were those that produced the greatest entropy. The study shows that an ecosystem could be ‘near equilibrium’ rather than ‘far from equilibrium’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号