首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   12篇
地质学   7篇
天文学   10篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2016年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有31条查询结果,搜索用时 250 毫秒
21.
During Li recovery from salar brines, Li concentration is typically increased to about 60,000 mg L?1 by evaporation. We investigated the concentration changes of Li, Na, K, Mg, Cl, SO4, and B during evaporation of both natural Uyuni and artificial Atacama brines. The Uyuni brine exhibited a maximum Li concentration of 6810 mg L?1 at 31 days of evaporation, at which point the majority of the Na and K in the brine was removed. The Li concentration decreased with further evaporation due to precipitation as Li2SO4, such that the level at the 56 day mark was approximately 4130 mg L?1. In contrast, the artificial Atacama brine showed no pronounced Li precipitation, even after 54 days, at which point the Li concentration was 21,800 mg L?1. The initial concentrations of Na and K in the Atacama brine were higher than those in the Uyuni brine, and the Atacama solution still retained K after 54 days of evaporation. The order of precipitation of cation species during the evaporation of both brines was: Na, followed by K, Mg, and Li. Thus, Li precipitation in the Atacama brine might be prevented due to the more favored precipitations of Na and K, such that significant Li removal did not occur in this brine.  相似文献   
22.
With a lack of United States federal policy to address climate change, cities, the private sector, and universities have shouldered much of the work to reduce carbon dioxide (CO2) and other greenhouse gas emissions. This study aims to determine how landcover characteristics influence the amount of carbon (C) sequestered and respired via biological processes, evaluating the role of land management on the overall C budget of an urban university. Boston University published a comprehensive Climate Action Plan in 2017 with the goal of achieving C neutrality by 2040. In this study, we digitized and discretized each of Boston University’s three urban campuses into landcover types, with C sequestration and respiration rates measured and scaled to provide a University-wide estimate of biogenic C fluxes within the broader context of total University emissions. Each of Boston University’s three highly urban campuses were net sources of biogenic C to the atmosphere. While trees were estimated to sequester 0.6 ± 0.2 kg C m−2 canopy cover year−1, mulch and lawn areas in 2018 emitted C at rates of 1.7 ± 0.4 kg C m−2 year−1 and 1.4 ± 0.4 kg C m−2 year−1, respectively. C uptake by tree canopy cover, which can spatially overlap lawn and mulched landcovers, was not large enough to offset biogenic emissions. The proportion of biogenic emissions to Scope 1 anthropogenic emissions on each campus varied from 0.5% to 2%, and depended primarily on the total anthropogenic emissions on each campus. Our study quantifies the role of urban landcover in local C budgets, offering insights on how landscaping management strategies—such as decreasing mulch application rates and expanding tree canopy extent—can assist universities in minimizing biogenic C emissions and even potentially creating a small biogenic C sink. Although biogenic C fluxes represent a small fraction of overall anthropogenic emissions on urban university campuses, these biogenic fluxes are under active management by the university and should be included in climate action plans.  相似文献   
23.
Abstract– Exothermic reactions during the annealing of laboratory synthesized amorphous magnesium‐bearing silicate particles used as grain analogs of cosmic dust were detected by differential scanning calorimetry (DSC) in air. With infrared spectroscopy and transmission electron microscopy, we show that cosmic dust could possibly undergo fusion to larger particles, with oxidation of magnesium silicide and crystallization of forsterite as exothermic reactions in the early solar system. The reactions begin at approximately 425, approximately 625, and approximately 1000 K, respectively, and the reaction energies (enthalpies) are at least 727, 4151, and 160.22 J g−1, respectively. During the crystallization of forsterite particles, the spectral evolution of the 10 μm feature from amorphous to crystalline was observed to begin at lower temperature than the crystallization temperature of 1003 K. During spectral evolution at lower temperature, nucleation and/or the formation of nanocrystallites of forsterite at the surface of the grain analogs was observed.  相似文献   
24.
25.
Abstract Electron spin resonance (ESR) analyses of quartz grains in fault gouge were performed for a core sample taken from the Nojima Fault that moved during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake). Distribution of radiation-induced defects in the gouge at a depth of 389.4 m was measured by extracting quartz grains from seven discrete positions within 30 mm of the fault plane on the granite side. The decrease in E'1 and Al centers was observed within 2 mm of the fault plane, suggesting partial annealing due to faulting. Partial annealing even at that depth suggested that conventional ESR dating, which is based on the hypothesis of complete annealing during faulting, was not applicable. Theoretical calculations of the temperature rise and of the thermal annealing of defects have been made by assuming a simple annealing model of heat generation on the fault plane. Thermal energy was calculated to have been approximately 8 MJ/m2 to explain the profile of the heat-affected region. Thermal energy was much larger than the one estimated from hydrothermal solution, and corresponded to the frictional heat calculated for a normal stress of 20 MPa, a displacement of 2 m, and a frictional coefficient of 0.2.  相似文献   
26.
Amorphous silicon oxide films have been studied on the basis of electron diffraction (ED) analyses and infrared (IR) spectroscopy in order to elucidate the relationship between the structures. After the heat treatment of the film in air at 300 and 500°C, the ED pattern showed halo rings, and the IR spectra clearly changed. Intensity analysis of the ED pattern provided evidence for the structural change of the amorphous film. It was concluded that the spectral changes in the ranges of 9.2–10.2, 12.5–13.5 and 19.5–22.5 μm were the result of phase transitions of the microcrystallites of α-cristobalite to β-cristobalite, and α- or β-quartz. Astrophysical implications have been discussed.  相似文献   
27.
28.
The α − β transition of quartz was successfully observed with using a single sample by means of the rectangular parallelepiped resonance (RPR) method. An oriented rectangular parallelepiped of α-quartz single crystal was prepared and the resonant frequencies of 30–11 vibrational modes were measured from room temperature to 700°C. The softening of quartz crystal was observed as the significant reduction of resonant frequencies near the α–β transition. The present study is the first application of the RPR method to the study of phase transition. The complete set of elastic constants of α- and β-quartz were determined as a function of temperature by the least-squares inversion of the measured frequency data obtained by a single run. This is a merit yielded by the RPR method. It is shown near the α − β transition in both α- and β-quartz that the elastic parameters decrease proportionally to |TT 0|n , where T is temperature and T 0 is the transition temperature, 573.0°C for α-quartz and 574.3°C for β-quartz. It was also seen that linear incompressibilities K 1 = (C 11 +C 12 +C 13)/3 and K 3 = (C 33 +2C 13)/3 decrease rapidly toward the transition, whereas, shear moduli C 44, C S1 = (C 11 +C 33 -2C 13)/4 and C S3 = (C 11 -C 12)/2 = C 66 decrease only slightly. The shear modulus C S3 = C 66 increased slightly in α-quartz. The elastic properties of isotropic aggregate of quartz were calculated, and it is shown that the longitudinal wave velocity significantly decreases at the α − β transition, whereas, the shear wave velocity decreases only slightly.  相似文献   
29.
Free-air gravity anomaly in plate subduction zones, characterized by island-arc high, trench low and outer-rise gentle high, reflects the cumulative effects of long-term crustal uplift and subsidence. In northeast Japan the island-arc high of observed free-air gravity anomaly takes its maximum about the eastern coastline. On the other hand, the current vertical crustal motion estimated from geological and geomorphological observations shows a gentle uplift in the land area and steep subsidence in the sea area with the neutral point near the eastern coastline. Such a discrepancy in spatial patterns between the free-air gravity anomaly and current vertical crustal motion can be ascribed to a change in the mode of crustal uplift and subsidence associated with the initiation of tectonic erosion at the North American-Pacific plate interface. We developed a realistic 3-D simulation model of steady plate subduction with tectonic erosion in northeast Japan on the basis of elastic/viscoelastic dislocation theory. Through numerical simulations with this model we found that simple steady plate subduction brings about the crustal uplift characterized by island-arc high with its maximum about the eastern coastline, while steady plate subduction with tectonic erosion, which is represented by the landward retreat of the plate interface, brings about gentle uplift in the land area and steep subsidence in the sea area with the neutral point near the eastern coastline. Therefore, if we suppose that tectonic erosion started 3–4 million years ago after the long duration of simple steady plate subduction, we can consistently explain both patterns of free-air gravity anomaly and current crustal uplift in northeast Japan.  相似文献   
30.
The generation of interplate earthquakes can be regarded as a process of tectonic stress accumulation and release, driven by relative plate motion. We completed a physics-based simulation system for earthquake generation cycles at plate interfaces in the Japan region, where the Pacific plate is descending beneath the North American and Philippine Sea plates, and the Philippine Sea plate is descending beneath the North American and Eurasian plates. The system is composed of a quasi-static tectonic loading model and a dynamic rupture propagation model, developed on a realistic 3-D plate interface model. The driving force of the system is relative plate motion. In the quasi-static tectonic loading model, mechanical interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across them on the basis of dislocation theory for an elastic surface layer overlying Maxwell-type viscoelastic half-space. In the dynamic rupture propagation model, stress changes due to fault slip motion on non-planar plate interfaces are evaluated with the boundary integral equation method. The progress of seismic (dynamic) or aseismic (quasi-static) fault slip on plate interfaces is governed by a slip- and time-dependent fault constitutive law. As an example, we numerically simulated earthquake generation cycles at the source region of the 1968 Tokachi-oki earthquake on the North American-Pacific plate interface. From the numerical simulation, we can see that postseismic stress relaxation in the asthenosphere accelerates stress accumulation in the source region. When the stress state of the source region is close to a critical level, dynamic rupture is rapidly accelerated and develops over the whole source region. When the stress state is much lower than the critical level, the rupture is not accelerated. This means that the stress state realized by interseismic tectonic loading essentially controls the subsequent dynamic rupture process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号