首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   2篇
地球物理   4篇
地质学   26篇
海洋学   5篇
天文学   6篇
自然地理   3篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1991年   2篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
11.
An inflatable bolt is integrated in the rock mass through the friction and mechanical interlock at the bolt–rock interface. The pullout resistance of the inflatable bolt is determined by the contact stress at the interface. The contact stress is composed of two parts, termed the primary and secondary contact stresses. The former refers to the stress established during bolt installation and the latter is mobilized when the bolt tends to slip in the borehole owing to the roughness of the borehole surface. The existing analysis of the inflatable rock bolt does not appropriately describe the interaction between the bolt and the rock since the influence of the folded tongue of the bolt on the stiffness of the bolt and the elastic rebound of the bolt tube in the end of bolt installation are ignored. The interaction of the inflatable bolt with the rock is thoroughly analysed by taking into account the elastic displacements of the rock mass and the bolt tube during and after bolt installation in this article. The study aims to reveal the influence of the bolt tongue on the contact stress and the different anchoring mechanisms of the bolt in hard and soft rocks. A new solution to the primary contact stress is derived, which is more realistic than the existing one in describing the interaction between the bolt and the rock. The mechanism of the secondary contact stress is also discussed from the point of view of the mechanical behaviour of the asperities on the borehole surface. The analytical solutions are in agreement with both the laboratory and field pullout test results. The analysis reveals that the primary contact stress decreases with the Young’s modulus of the rock mass and increases with the borehole diameter and installation pump pressure. The primary contact stress can be easily established in soft and weak rock but is low or zero in hard and strong rock. In soft and weak rock, the primary contact stress is crucially important for the anchorage of the bolt, while in hard and strong rock it is the secondary contact stress that plays a vital role.  相似文献   
12.
Surface-parallel slabbing is a failure mode often observed in highly stressed hard rocks in underground excavations. This paper presents the results of experimental studies on slabbing failure of hard rock with different sample height-to-width ratios. The main purpose of this study was to find out the condition to create slabbing failure under uniaxial compression and to determine the slabbing strength of hard rock in the laboratory. Uniaxial compression tests were carried out using five groups of granite specimens. The mechanical parameters of the sample rock, Iddefjord granite from Norway, were measured on the cylindrical and Brazilian disc specimens. The transition of the failure mode was studied using rectangular prism specimens. The initiation and the propagation of slabbing fractures in specimens were identified by examining the relationship among the applied stress, strain and the acoustic emission. The stress thresholds identified were compared to those reported by other authors for crack initiation and brittle failure. It is observed that the macro failure mode will be transformed from shear to slabbing when the height/width ratio is reduced to 0.5 in the prism specimens under uniaxial compression. Micro σ 1-parallel fractures initiate when the lateral strain departs from its linearity. Slabbing fractures are approximately parallel to the loading direction. Labotatory tests show that the slabbing strength (σ sl) of hard rock is about 60% of its uniaxial compression strength. It means that if the maximum tangential stress surrounding an underground excavation reaches about the slabbing threshold, slabbing fractures may take place on the boundary of the excavation. Therefore, the best way to stop or eliminate slabbing failure is to control the excavation boundary to avoid the big stress concentration, so that the maximum tangential stress could be under the slabbing threshold.  相似文献   
13.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   
14.
In 1964, E.H. Hammond proposed criteria for classifying and mapping physiographic regions of the United States. Hammond produced a map entitled “Classes of Land Surface Form in the Forty‐Eight States, USA”, which is regarded as a pioneering and rigorous treatment of regional physiography. Several researchers automated Hammond?s model in GIS. However, these were local or regional in application, and resulted in inadequate characterization of tablelands. We used a global 250 m DEM to produce a new characterization of global Hammond landform regions. The improved algorithm we developed for the regional landform modeling: (1) incorporated a profile parameter for the delineation of tablelands; (2) accommodated negative elevation data values; (3) allowed neighborhood analysis window (NAW) size to vary between parameters; (4) more accurately bounded plains regions; and (5) mapped landform regions as opposed to discrete landform features. The new global Hammond landform regions product builds on an existing global Hammond landform features product developed by the U.S. Geological Survey, which, while globally comprehensive, did not include tablelands, used a fixed NAW size, and essentially classified pixels rather than regions. Our algorithm also permits the disaggregation of “mixed” Hammond types (e.g. plains with high mountains) into their component parts.  相似文献   
15.
The Eocene rocks exposed in the Fayum Area, Egypt, are well known for their fossil vertebrates but in recent times the sharks and rays have been largely neglected. Extensive surface collecting, supplemented with bulk samples, has produced large collections from the Midawara, Gehannam, Birket Qarun and Qasr el-Sagha formations, spanning the Bartonian and Priabonian stages and from palaeoenvironments varying from open muddy shelf to very shallow estuarine systems. In total about 90 species of sharks and rays are recorded, many of them previously unrecognised, resulting in some of the most diverse fossil chondrichthyan assemblages known from the Tertiary. Teeth of these species suggest that they occupied a wide range of ecological niches from top predator to tiny benthic invertebrate feeder to planktivore. Many of the species are limited in their stratigraphical range and show potential to be used, at least locally, as biostratigraphical indicators for stratigraphically poorly constrained vertebrate sites elsewhere in North Africa. Distinctly different faunas from different sedimentary environments indicate a strong environmental control on the distribution of many species.  相似文献   
16.
The internal structure of coastal foredunes from three sites along the north Norfolk coast has been investigated using ground‐penetrating radar (GPR), which provides a unique insight into the internal structure of these dunes that cannot be achieved by any other non‐destructive or geophysical technique. Combining geomorphological and geophysical investigations into the structure and morphology of these coastal foredunes has enabled a more accurate determination of their development and evolution. The radar profiles show the internal structures, which include foreslope accretion, trough cut and fill, roll‐over and beach deposits. Foredune ridges contain large sets of low‐angle cross‐stratification from dune foreslope accretion with trough‐shaped structures from cut and fill on the crest and rearslope. Foreslope accretion indicates sand supply from the beach to the foreslope, while troughs on the dune crest and rearslope are attributed to reworking by offshore winds. Bounding surfaces between dunes are clearly resolved and reveal the relative chronology of dune emplacement. Radar sequence boundaries within dunes have been traced below the water‐table passing into beach erosion surfaces. These are believed to result from storm activity, which erodes the upper beach and dunes. In one example, at Brancaster, a dune scarp and erosion surface may be correlated with erosion in the 1950s, possibly the 1953 storm. Results suggest that dune ridge development is intimately linked to changes in the shoreline, with dune development associated with coastal progradation while dunes are eroded during storms and, where beaches are eroding, a stable coast provides more time for dune development, resulting in higher foredune ridges. A model for coastal dune evolution is presented, which illustrates stages of dune development in response to beach evolution and sand supply. In contrast to many other coastal dune fields where the prevailing wind is onshore, on the north Norfolk coast, the prevailing wind is directed along the coast and offshore, which reduces the landward migration of sand dunes.  相似文献   
17.
18.
The aim of the paper is to examine wood as a source of fuel energy in rural South Africa and factors influencing its usage. The analysis is based on household profiles and characteristics (e.g., gender, caste, population and income) in a livelihood framework. Fuelwood consumption was estimated to be 692 kg/capita, and 4343 kg/user household per annum, valued at $311 per household. Consumption was modelled in relation to informal and formal cash incomes, and population of children, female and male adults. However, only the population of female adults could significantly influence consumption of fuelwood. This implied that where there were more women in a household, consumption was likely to be high. This might be due to the majority of women doing the cooking and heating in the household. Any change in the value of cash income of households had no significant impacts on fuelwood consumed. Cash incomes might therefore not be strong determinants of the types of energy used by rural households. The average quantity of wood consumed for fuel energy in summer was not significantly different from consumption in winter. Some households perpetually used more wood than others. The study further showed that harvesting of wood for fuel energy is not opportunistic, but requires reallocation of time for other livelihood activities in times of shortage. The fuelwood crisis is not simple and not only about shortage of fuelwood and/or population growth but linked to household profiles and other livelihood strategies and subsequently vulnerability of households. These would require thorough investigation and understanding in relation to precise demand and supply data for fuelwood before the fuelwood problem can be sufficiently managed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
19.
SciMeasure, in collaboration with Emory University and the Jet Propulsion Laboratory, has developed a very versatile CCD controller for use in adaptive optics, optical interferometry, and other applications requiring high-speed readout rates and/or low read noise. The overall architecture of this controller system will be discussed and its performance using both EEV CCD39 and MIT/LL CCID-19 detectors will be presented. This controller is used in the adaptive optics system, developed by JPL, for the 200′′ Hale telescope at Palomar Mountain. Early diffraction-limited science results, recently achieved by the AO system, are presented. We gratefully acknowledge the financial support of NASA through SBIR contracts NAS8–97195 and NAS8–98081.  相似文献   
20.
In this work, dynamic test results of D-bolts are presented. The rock bolt specimens studied are 20 and 22 mm in diameter and 0.8–1.5 m in section length. The bolts were tested at an impact velocity of 5.4–6.2 m/s and with impact energy varying from 10 to 60 kJ. In total, over 50 drop tests were conducted during a period of three years. The dynamic tests show that a D-bolt section of 22 mm × 1.5 m can sustain an impact of 56 kJ of a dynamic impact and absorb 60 kJ of energy prior to failure. The maximum impact energy of the 22 mm bolt is thus 37 kJ/m of bolt and the maximum energy absorption is 40 kJ/m. The displacement of the D-bolt increases linearly with the impact energy. A theoretical solution has been obtained for the relationship between the impact energy and the displacement of the bolt. It states that the energy absorption of a D-bolt section is proportionally related to the volume of the bolt section and the tensile strength and ultimate strain of the bolt material. It was also found that the magnitude of the impact energy determines whether or not the bolt fails, while the impact momentum determines how long the impact lasts. The impact duration increases linearly with momentum as long as the bolt shank does not fail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号