首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   12篇
测绘学   38篇
大气科学   39篇
地球物理   62篇
地质学   113篇
海洋学   27篇
天文学   89篇
自然地理   48篇
  2021年   2篇
  2020年   6篇
  2019年   11篇
  2018年   10篇
  2017年   5篇
  2016年   9篇
  2015年   14篇
  2014年   13篇
  2013年   21篇
  2012年   4篇
  2011年   9篇
  2010年   12篇
  2009年   22篇
  2008年   18篇
  2007年   28篇
  2006年   22篇
  2005年   17篇
  2004年   15篇
  2003年   13篇
  2002年   12篇
  2001年   13篇
  2000年   11篇
  1999年   10篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   3篇
  1981年   10篇
  1980年   4篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1859年   1篇
排序方式: 共有416条查询结果,搜索用时 31 毫秒
361.
The western Fiordland Orthogneiss (WFO) is an extensive composite metagabbroic to dioritic arc batholith that was emplaced at c. 20–25 km crustal depth into Palaeozoic and Mesozoic gneiss during collision and accretion of the arc with the Mesozoic Pacific Gondwana margin. Sensitive high‐resolution ion microprobe U–Pb zircon data from central and northern Fiordland indicate that WFO plutons were emplaced throughout the early Cretaceous (123.6 ± 3.0, 121.8 ± 1.7, 120.0 ± 2.6 and 115.6 ± 2.4 Ma). Emplacement of the WFO synchronous with regional deformation and collisional‐style orogenesis is illustrated by (i) coeval ages of a post‐D1 dyke (123.6 ± 3.0 Ma) and its host pluton (121.8 ± 1.7 Ma) at Mt Daniel and (ii) coeval ages of pluton emplacement and metamorphism/deformation of proximal paragneiss in George and Doubtful Sounds. The coincidence emplacement and metamorphic ages indicate that the WFO was regionally significant as a heat source for amphibolite to granulite facies metamorphism. The age spectra of detrital zircon populations were characterized for four paragneiss samples. A paragneiss from Doubtful Sound shows a similar age spectrum to other central Fiordland and Westland paragneiss and SE Australian Ordovician sedimentary rocks, with age peaks at 600–500 and 1100–900 Ma, a smaller peak at c. 1400 Ma, and a minor Archean component. Similarly, one sample of the George Sound paragneiss has a significant Palaeozoic to Archean age spectrum, however zircon populations from the George Sound paragneiss are dominated by Permo‐Triassic components and thus are markedly different from any of those previously studied in Fiordland.  相似文献   
362.
363.
We investigate the physics of gas accretion in young stellar clusters. Accretion in clusters is a dynamic phenomenon as both the stars and the gas respond to the same gravitational potential. Accretion rates are highly non-uniform with stars nearer the centre of the cluster, where gas densities are higher, accreting more than others. This competitive accretion naturally results in both initial mass segregation and a spectrum of stellar masses. Accretion in gas-dominated clusters is well modelled using a tidal-lobe radius instead of the commonly used Bondi–Hoyle accretion radius. This works as both the stellar and gas velocities are under the influence of the same gravitational potential and are thus comparable. The low relative velocity which results means that R tidal< R BH in these systems. In contrast, when the stars dominate the potential and are virialized, R BH< R tidal and Bondi–Hoyle accretion is a better fit to the accretion rates.  相似文献   
364.
365.
The Arthur River Complex is a suite of gabbroic to dioritic orthogneisses in northern Fiordland, New Zealand. The Arthur River Complex separates rocks of the Median Tectonic Zone, a Mesozoic island arc complex, from Palaeozoic rocks of the palaeo‐Pacific Gondwana margin, and is itself intruded by the Western Fiordland Orthogneiss. New SHRIMP U/Pb single zircon data are presented for magmatic, metamorphic and deformation events in the Arthur River Complex and adjacent rocks from northern Fiordland. The Arthur River Complex orthogneisses and dykes are dominated by magmatic zircon dated at 136–129 Ma. A dioritic orthogneiss that occurs along the eastern margin of the Complex is dated at 154.4 ± 3.6 Ma and predates adjacent plutons of the Median Tectonic Zone. Rims on zircon cores from this sample record a thermal event at c. 120 Ma, attributed to the emplacement of the Western Fiordland Orthogneiss. Migmatitic Palaeozoic orthogneiss from the Arthur River Complex (346 ± 6 Ma) is interpreted as deformed wall rock. Very fine rims (5–20 µm) also indicate a metamorphic age of c. 120–110 Ma. A post‐tectonic pegmatite (81.8 ± 1.8 Ma) may be related to phases of crustal extension associated with the opening of the Tasman Sea. The Arthur River Complex is interpreted as a batholith, emplaced at mid‐crustal levels and then buried to deep crustal levels due to convergence of the Median Tectonic Zone arc and the continental margin.  相似文献   
366.
367.
Defining a Digital Earth System   总被引:1,自引:0,他引:1  
In a 1998 speech before the California Science Center in Los Angeles, then US Vice‐President Al Gore called for a global undertaking to build a multi‐faceted computing system for education and research, which he termed “Digital Earth.” The vision was that of a system providing access to what is known about the planet and its inhabitants’ activities – currently and for any time in history – via responses to queries and exploratory tools. Furthermore, it would accommodate modeling extensions for predicting future conditions. Organized efforts towards realizing that vision have diminished significantly since 2001, but progress on key requisites has been made. As the 10 year anniversary of that influential speech approaches, we re‐examine it from the perspective of a systematic software design process and find the envisioned system to be in many respects inclusive of concepts of distributed geolibraries and digital atlases. A preliminary definition for a particular digital earth system as: “a comprehensive, distributed geographic information and knowledge organization system,” is offered and discussed. We suggest that resumption of earlier design and focused research efforts can and should be undertaken, and may prove a worthwhile “Grand Challenge” for the GIScience community.  相似文献   
368.
369.
370.
Terrain analysis uses different workflows to extract features from terrain models for the purpose of understanding topographic patterns and processes. However, the results of different workflows often conflict, leading to uncertainties about feature locations. Instead of relying upon a single workflow, we suggest that a fusion of information from multiple workflows better informs terrain analysis. From terrain data with different degrees of variability, we extracted terrain features related to the set of topographic surface network feature classes {peaks, pits, saddles, ridges, courses} using workflows from free, open-source, and commercial software. A multi-scale analysis produced terrain features with fuzzy membership values for various feature classes and revealed that terrain locations can exhibit characteristics of all classes. Multi-feature maps were created by determining at each location the dominant and second-ranked features, and an uncertainty value. Our multi-method approach incorporated all of the workflows’ multi-scale results and again produced multi-feature maps that increased the confidence of some features and reduced the signal of dissimilar results. We also found that high variability terrain produced crisper features in both spatial extent and membership strength. Our overall conclusion is that multi-scale, multi-feature, and multi-method analyses clarify terrain feature uncertainty.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号