首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   26篇
  国内免费   6篇
测绘学   13篇
大气科学   36篇
地球物理   123篇
地质学   221篇
海洋学   60篇
天文学   79篇
综合类   2篇
自然地理   62篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   19篇
  2016年   25篇
  2015年   26篇
  2014年   19篇
  2013年   24篇
  2012年   28篇
  2011年   38篇
  2010年   42篇
  2009年   41篇
  2008年   25篇
  2007年   33篇
  2006年   24篇
  2005年   26篇
  2004年   28篇
  2003年   20篇
  2002年   13篇
  2001年   8篇
  2000年   15篇
  1999年   6篇
  1998年   15篇
  1997年   8篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   8篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
排序方式: 共有596条查询结果,搜索用时 15 毫秒
81.
We report site response in Las Vegas Valley (LVV) from historical recordings of Nevada Test Site (NTS) nuclear explosions and earthquake recordings from permanent and temporary seismic stations. Our data set significantly improves the spatial coverage of LVV over previous studies, especially in the northern, deeper parts of the basin. Site response at stations in LVV was measured for frequencies in the range 0.2–5.0 Hz using Standard Spectral Ratios (SSR) and Horizontal-Vertical Spectral Ratios (HVR). For the SSR measurements we used a reference site (approximately NEHRP B ``rock' classification) located on Frenchman Mountain outside the basin. Site response at sedimentary sites is variable in LVV with average amplifications approaching a factor of 10 at some frequencies. We observed peaks in the site response curves at frequencies clustered near 0.6, 1.2 and 2.0 Hz, with some sites showing additional lower amplitude peaks at higher frequencies. The spatial pattern of site response is strongly correlated with the reported depth to basement for frequencies between 0.2 and 3.0 Hz, although the frequency of peak amplification does not show a similar correlation. For a few sites where we have geotechnical shear velocities, the amplification shows a correlation with the average upper 30-meter shear velocities, V30. We performed two-dimensional finite difference simulations and reproduced the observed peak site amplifications at 0.6 and 1.2 Hz with a low velocity near-surface layer with shear velocities 600–750 m/s and a thickness of 100–200 m. These modeling results indicate that the amplitude and frequencies of site response peaks in LVV are strongly controlled by shallow velocity structure.  相似文献   
82.
83.
84.
himu, em i andem ii are three of the main geochemical mantle components that give rise to oceanic island basalts [1]. They represent the end members that produce the extreme isotopic compositions measured on intraplate volcanics. In French Polynesia, all three mantle components are represented in volcanic rocks. The characteristichimu signature is found in Tubuai, Mangaia and Rurutu,em i is present in the source of Rarotonga and Pitcairn volcanics andem ii dominates the composition of most Society Islands. Intermediate values between the three end members are found on most islands.We suggest that the three components are not independent but are physically related in the mantle. Thehimu component is thought to be recycled oceanic crust that lost part of its Pb through hydrothermal processes prior to and during subduction.em i andem ii are believed to acquire their isotopic and trace element characteristics through entrainment of sediments that were subducted together with the oceanic crust.The trace element pattern and the isotopic composition ofhimu lavas can be quantitatively modelled using a mixture of 25% old recycledmorb crust and 75% mantle peridotite. The extreme Pb composition is modelled assuming that Pb was lost from oceanic crust when hydrothermal alteration at the ridge leached Pb from the basalt to redeposit it as sulphides on top of and throughout the crust, followed by preferential dissolution of sulphides during dehydration in the subduction zone. These processes led to a drastic increase of theU/Pb ratio of the subducted material which evolved over 2 Ga to very radiogenic Pb isotopic compositions. Pb isotopic compositions similar to those ofem i andem ii are modelled assuming that sediments with average crustal Pb isotopic compositions were subducted and recycled into the mantle together with the underlyingmorb oceanic crust. Pelagic sediments (μ 5 andκ 6) account for the Pb isotopic composition ofem i whereas terrigenous sediments (μ 10 andκ 4.5) evolve towards theem ii end member. A few percent of sediment in the recycled crust-sediment mixture will destroy the characteristic Pb isotopic signature of thehimu component. This, together with the low probability of isolating oceanic crust in the mantle for 2 Ga, explains why the extremehimu composition, as seen on Tubuai and St Helena, is sampled so rarely by oceanic volcanism.  相似文献   
85.
86.
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems.Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element’s natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.  相似文献   
87.
On the passive margin of the Nile deep-sea fan, the active Cheops mud volcano (MV; ca. 1,500 m diameter, ~20–30 m above seafloor, 3,010–3,020 m water depth) comprises a crater lake with hot (up to ca. 42 °C) methane-rich muddy brines in places overflowing down the MV flanks. During the Medeco2 cruise in fall 2007, ROV dives enabled detailed sampling of the brine fluid, bottom lake sediments at ca. 450 m lake depth, sub-surface sediments from the MV flanks, and carbonate crusts at the MV foot. Based on mineralogical, elemental and stable isotope analyses, this study aims at exploring the origin of the brine fluid and the key biogeochemical processes controlling the formation of these deep-sea authigenic carbonates. In addition to their patchy occurrence in crusts outcropping at the seafloor, authigenic carbonates occur as small concretions disseminated within sub-seafloor sediments, as well as in the bottom sediments and muddy brine of the crater lake. Aragonite and Mg-calcite dominate in the carbonate crusts and in sub-seafloor concretions at the MV foot, whereas Mg-calcite, dolomite and ankerite dominate in the muddy brine lake and in sub-seafloor concretions near the crater rim. The carbonate crusts and sub-seafloor concretions at the MV foot precipitated in isotopic equilibrium with bottom seawater temperature; their low δ13C values (–42.6 to –24.5‰) indicate that anaerobic oxidation of methane was the main driver of carbonate precipitation. By contrast, carbonates from the muddy lake brine, bottom lake concretions and crater rim concretions display much higher δ13C (up to –5.2‰) and low δ18O values (down to –2.8‰); this is consistent with their formation in warm fluids of deep origin characterized by 13C-rich CO2 and, as confirmed by independent evidence, slightly higher heavy rare earth element signatures, the main driver of carbonate precipitation being methanogenesis. Moreover, the benthic activity within the seafloor sediment enhances aerobic oxidation of methane and of sulphide that promotes carbonate dissolution and gypsum precipitation. These findings imply that the coupling of carbon and sulphur microbial reactions represents the major link for the transfer of elements and for carbon isotope fractionation between fluids and authigenic minerals. A new challenge awaiting future studies in cold seep environments is to expand this work to oxidized and reduced sulphur authigenic minerals.  相似文献   
88.
The influence of a hedge surrounding bottomland on soil‐water movement along the hillslope was studied on a plot scale for 28 months. The study was based on the comparison of two transects, one with a hedge, the other without, using mainly a dense grid of tensiometers. The influence of the bottomland hedge was located in the area where tree roots were developed, several metres upslope from the hedge, and could be observed both in the saturated and non‐saturated zone, from May to December. The hedge induced a high rate of soil drying, because of the high evaporative capacity of the trees. We evaluated that water uptake by the hedge during the growing season was at least 100 mm higher than without a hedge. This increased drying rate led to a delayed rewetting of the soils upslope from the hedge in autumn, of about 1 month compared with the situation without a hedge. Several consequences of this delayed rewetting are expected: a delay in the return of subsurface transfer from the hillslope to the riparian zone, a buffering effect of hedges on floods, already observed at the catchment scale, and an increased residence time of pollutants. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
89.
90.
Twenty granodioritic rocks and one amphibolitic enclave of the “basement” of the Suomussalmi-Kuhmo Archaean (2.65 Ga) greenstone belts (central-eastern Finland), have been chosen together with one greenstone sample for Rb-Sr and Sm-Nd geochronological and isotopic studies.The granitoïd rocks are subdivided into three groups: two generations of grey gneisses and a post-belt augen gneiss. The Rb-Sr ages of the first and second generation of grey gneisses are 2.86 ± 0.09 and 2.62 ± 0.07 Ga, respectively. These results are corroborated by Sm-Nd data. The post-belt augen gneiss gives an age of 2.51 ± 0.11 Ga. The results show that the two generations of grey gneisses, the greenstone belts and the post-greenstone augen gneiss, were developed over a period > 350 Ma. The two generations of grey gneisses show identical ISr values (0.7023 ± 8 and 0.7024 ± 6) which contrast with that of the augen gneiss (0.7049 ± 8). The low ISr and the near-chondritic ?TCHUR values indicate that the grey gneisses cannot derived from much older continental materials. Trace element studies suggest that these grey gneisses have had a multi-stage development. The augen gneiss with a moderately high ISr is likely to be derived from a granodiorite originated by partial melting of older sialic crust. The more probable parent rock seems to be the first generation grey gneisses. The ISr and average Rb/Sr values preclude the greenstone belt and the second generation of grey gneisses as the protolith.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号