首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1877篇
  免费   79篇
  国内免费   26篇
测绘学   51篇
大气科学   108篇
地球物理   530篇
地质学   751篇
海洋学   186篇
天文学   262篇
综合类   11篇
自然地理   83篇
  2024年   4篇
  2023年   12篇
  2022年   19篇
  2021年   42篇
  2020年   37篇
  2019年   50篇
  2018年   68篇
  2017年   75篇
  2016年   95篇
  2015年   50篇
  2014年   76篇
  2013年   107篇
  2012年   91篇
  2011年   145篇
  2010年   94篇
  2009年   131篇
  2008年   110篇
  2007年   88篇
  2006年   96篇
  2005年   65篇
  2004年   74篇
  2003年   51篇
  2002年   48篇
  2001年   26篇
  2000年   25篇
  1999年   27篇
  1998年   23篇
  1997年   16篇
  1996年   12篇
  1995年   15篇
  1994年   16篇
  1993年   8篇
  1992年   8篇
  1991年   14篇
  1990年   11篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   13篇
  1985年   8篇
  1984年   18篇
  1983年   7篇
  1982年   6篇
  1981年   9篇
  1979年   5篇
  1976年   5篇
  1972年   4篇
  1971年   8篇
  1970年   8篇
  1969年   3篇
排序方式: 共有1982条查询结果,搜索用时 15 毫秒
21.
22.
The spatial and temporal variations of the flux of CO2 were determined during 2007 in the Recife estuarine system (RES), a tropical estuary that receives anthropogenic loads from one of the most populated and industrialized areas of the Brazilian coast. The RES acts as a source of nutrients (N and P) for coastal waters. The calculated CO2 fluxes indicate that the upstream inputs of CO2 from the rivers are largely responsible for the net annual CO2 emission to the atmosphere of +30 to +48 mmol m?2 day?1, depending on the CO2 exchange calculation used, which mainly occurs during the late austral winter and early summer. The observed inverse relationship between the CO2 flux and the net ecosystem production (NEP) indicates the high heterotrophy of the system (except for the months of November and December). The NEP varies between ?33 mmol m?2 day?1 in summer and ?246 mmol m?2 day?1 in winter. The pCO2 values were permanently high during the study period (average ~4,700 μatm) showing a gradient between the inner (12,900 μatm) and lower (389 μatm) sections on a path of approximately 30 km. This reflects a state of permanent pollution in the basin due to the upstream loading of untreated domestic effluents (N/P?=?1,367:6 μmol kg?1 and pH?=?6.9 in the inner section), resulting in the continuous mineralization of organic material by heterotrophic organisms and thereby increasing the dissolved CO2 in estuarine waters.  相似文献   
23.
Mount Bulusan, the Philippines’ fourth most active volcano, erupted in February 21, 2011, sending volcanic ash and pyroclastic materials to its surrounding rivers. The waters drained into the estuary of harmful algal blooms plagued Sorsogon Bay. We aim to determine the impact of the 2011 volcanic eruption and the preceding volcanic ash emissions to the dissolved silica concentration of rivers draining the flanks of Mt. Bulusan and its possible implications to the phytoplankton assemblage of the bay. Six river water sampling periods from August 2010 to October 2012 overlapped with Mt. Bulusan’s active phase of volcanism. Our data shows that mean river silica from pre-eruption levels of ~?500 μM increased by more than 200% during and post-eruption. Highest Si concentration of 2270 μM was measured from Cadacan River in August 2011. Here, we argue that the sustained general increase of dissolved silica is due to the silica-containing materials from Mt. Bulusan’s eruption and that their concentration in river waters is also a function of watershed lithology and precipitation. Increase in dissolved silica and other nutrients caused a shift to diatom domination and, possibly, termination of Pyrodinium bahamense var. compressum blooms. Silica load increase in embayments is a natural process that controls the dominance of algae. Our study also highlights the importance of Philippine rivers to the global ocean silica budget as a function of high precipitation, tectonics in general, and volcanism in particular.  相似文献   
24.
International Journal of Earth Sciences - The geometry and emplacement of the ~ 96 km2, Late Cretaceous Sintra Igneous complex (SIC, ca. 80 Ma) into the West Iberian passive...  相似文献   
25.
International Journal of Earth Sciences - The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assembly of the Rodinia supercontinent to...  相似文献   
26.
We propose a novel pragmatic approach of in situ 15N and 13C isotope labelling of trees for subsequent litter decomposition and turnover studies under field conditions. Using this method the labelling of even large trees under natural conditions is possible and compared to tree labelling under artificial conditions in greenhouses the in situ approach is less expensive. 13C and 15N labelling were carried out simultaneously via photosynthesis by tree gassing with 13CO2 and by stem injection of 15NH415NO3. The aims of this study were: (i) to produce a sufficient quantity of labelled plant material for subsequent field incubation studies and (ii) to investigate the effectiveness and distribution of in situ 15N (15NH415NO3) and 13C (13CO2) labelling of Podocarpus falcatus, Croton macrostachys, Prunus africana and Cupressus lusitanica. The following targets need to be achieved: (i) Assuming almost natural litter fall conditions, enough labelled plant material must be produced in situ for the turnover experiment; (ii) intra-plant tracer enrichment shall be homogeneous; (iii) tracer enrichment should be comparable for different tree species; and (iv) tracer enrichment must be sufficient for subsequent litter turnover studies using the stable isotope approach. Our results clearly demonstrated that several kilograms of labelled plant material can be produced in situ. For many ecosystems, this amount is sufficient for a long term litter turnover experiment on a field scale under almost natural litter fall conditions. However, intra-plant label uptake of 13C and 15N was heterogeneous so that only leaves (litter) should be used for the turnover study. It could be shown that only a part of the labile C and N fraction in the leaves was labelled. Nevertheless, label uptake was sufficient for subsequent litter turnover studies.  相似文献   
27.
Two sedimentary cores with pollen, charcoal and radiocarbon data are presented. These records document the Late‐glacial and Holocene dry forest vegetation, fire and environmental history of the southern Cauca Valley in Colombia (1020 m). Core Quilichao‐1 (640 cm; 3° 6′N, 76° 31′W) represents the periods of 13 150–7720 14C yr BP and, following a hiatus, from 2880 14C yr BP to modern. Core La Teta‐2 (250 cm; 3° 5′N, 76° 32′W) provides a continuous record from 8700 14C yr BP to modern. Around 13 150 14C yr BP core Quilichao‐1 shows an active Late‐glacial drainage system and presence of dry forest. From 11 465 to 10 520 14C yr BP dry forest consists mainly of Crotalaria, Moraceae/Urticaceae, Melastomataceae/Combretaceae, Piper and low stature trees, such as Acalypha, Alchornea, Cecropia and Celtis. At higher elevation Andean forest comprising Alnus, Hedyosmum, Quercus and Myrica was common. After 10 520 14C yr BP the floral composition of dry forest changed, with extensive open grass vegetation indicative of dry climatic conditions. This event may coincide with the change to cool and dry conditions in the second part of the El Abra stadial, an equivalent to the Younger Dryas. From 8850 14C yr BP the record from La Teta indicates dry climatic conditions relative to the present, these prevailing up to 2880 14C yr BP at Quilichao and to 2720 14C yr BP at La Teta. Severe dryness reached maxima at 7500 14C yr BP and 4300 14C yr BP, when dry forest reached maximum expansion. Dry forest was gradually replaced by grassy vegetation, reaching maximum expansion around 2300 14C yr BP. After 2300 14C yr BP grassy vegetation remains abundant. Presence of crop taxa (a.o. Zea mays), disturbance indicators (Cecropia) and an increase in charcoal point to the presence of pre‐Columbian people since 2300 14C yr BP. After 950 14C yr BP, expansion of secondary forest taxa may indicate depopulation and abandonment of previously cultivated land. After 400 14C yr BP, possibly related to the Spanish conquest, secondary forest expanded and charcoal concentrations increased, possibly indicating further reduction of cultivated land. During the past century, Heliotropium and Didymopanax became abundant in an increasingly degraded landscape. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
28.
Sulfate-reducing passive bioreactors have proved to be an effective technology for the treatment of acid mine drainage (AMD) contaminated waters over relatively short periods of time (1–5 a). However, long-term efficiency can be limited by several factors including problems related to the hydraulic properties of the reactive mixture. In this study, the effect of two hydraulic retention times (HRTs) of 7.3 d and 10 d on the performance of passive bioreactors was evaluated over an 11-month period for the treatment of a highly contaminated AMD. Evolution of the porosity and hydraulic conductivity of the reactive mixture was also evaluated during the 15-month operation of two bioreactors. Results indicated that bioreactors were effective at both HRTs for increasing the pH and alkalinity of contaminated water and for SO4 and metal removal (60–82% for Fe and up to 99.9% for Cd, Ni and Zn). Although the quality of treated effluent was significantly improved with the 10 d HRT compared to the 7.3 d HRT, results showed that the higher HRT reduced the porosity and the permeability of the reactive mixture which might lead to hydraulic related problems and, eventually, to limited efficiency in long-term operation compared to a shorter HRT. The choice of HRT for a passive bioreactor must therefore consider both the desired quality of treated effluent and the potential for deterioration of hydraulic properties in the reactive mixture.  相似文献   
29.
Column bioreactors were used for studying mechanisms of metal removal, assessment of long-term stability of spent reactive mixtures, as well as potential metal mobility after treating highly contaminated acid mine drainage (AMD; pH 2.9–5.7). Several physicochemical, microbiological, and mineralogical analyses were performed on spent reactive mixtures collected from 4 bioreactors, which were tested in duplicate for two hydraulic retention times (7.3d and 10d), with downward flow over an 11-month period. Consistent with the high metal concentrations in the AMD feed, and with low metal concentrations measured in the treated effluent, the physicochemical analyses indicated very high concentrations of metals (Fe, Mn, Cd, Ni, and Zn) in the top and bottom layers of the reactive mixtures from all columns. Moreover, the concentrations of Fe (50.8–57.8 g/kg) and Mn (0.53–0.70 g/kg) were up to twice as high in the bottom layers, whereas the concentrations of Cd (6.77–13.3 g/kg), Ni (1.80–5.19 g/kg) and Zn (2.53–13.2 g/kg) were up to 50-times higher in the top layers. Chemical extractions and elemental analysis gave consistent results, which indicated a low fraction of metals removed as sulfides (up to 15% of total metals recovered in spent reactive mixtures). Moreover, Fe and Mn were found in a more stable chemical form (residual fraction was 42–74% for Mn and 30–77% for Fe) relative to Cd, Ni or Zn, which seemed more weakly bound (oxidisable/reducible fractions) and showed higher potential mobility. Besides identifying (oxy)hydroxide and carbonate minerals, the mineralogical analyses identified metal sulfides containing Fe, Cd, Ni and Zn. Metal removal mechanisms were, therefore, mainly adsorption and other binding mechanisms with organic matter (for Cd, Ni and Zn), and the precipitation as (oxy)hydroxide minerals (for Fe and Mn). After 15 months, however, the column bioreactors did not lose their capacity for removing metals from the AMD. Although the metals were immobile during the bioreactor treatment, their mobility could increase from spent reactive mixtures, if stored inappropriately. Metal recovery by acidic leaching of spent substrates at the end of bioreactor operation could be an alternative.  相似文献   
30.
From 1989 to 2007, a severe decline in Zostera noltii meadows was reported in the Arcachon Bay, with an accelerated regression after 2005. We investigated the inter-annual variability of the biogeochemistry of the sediment in an area affected by seagrass decline. In late summer and in winter of the years 2006, 2010, and 2011, sediment cores were collected at low tide on vegetated and adjacent non-vegetated sediments located in the eastern part of the Arcachon Bay. The geochemical analyses of sediment solid-phase organic carbon, reactive P and Fe, and the pore water concentrations of Fe2+, DIP, and NH4 + are presented. The changes in the chemistry of sediment and pore water between 2006 and 2010 are interpreted as a consequence of the decrease in the Z. noltii biomass between 2006 and 2010. The absence of significant seasonal variations in biomass throughout the growth period (March–September) in 2011 is most likely related to the regression of Z. noltii meadow that strongly affects the study area. In contrast to the healthy meadow in 2006, the declining meadow favored the dissolution of sedimentary particulate phosphorus in winter. In late summer, the low biomass of seagrass resulted in a net release of ammonium in the pore water of the upper 20 cm of sediment. This study clearly shows that seagrass decay may enhance nutrient release in sediments, resulting in a significant supply of phosphorus to the water column of a magnitude comparable to annual inputs to the lagoon from the rivers and the tidal pump.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号