首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   1篇
  国内免费   1篇
大气科学   2篇
地球物理   13篇
地质学   15篇
海洋学   2篇
天文学   21篇
自然地理   7篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有60条查询结果,搜索用时 0 毫秒
31.
We investigated the generation of dynamo waves in the solar convection zone through a numerical simulation. We integrated the axisymmetric α–Ω kinematic dynamo equations in a spherical geometry, where the α- and Ω-profiles depend on the spatial coordinates. The model results show that the fundamental parameter that determines the behavior of the system is the product between the characteristic intensities of the α and Ω contributions. In particular, we found three different regimes in which the system exhibits different behaviors: a regime without a dynamo effect, one with an exponential amplification of the magnetic field, and one with dynamo waves.  相似文献   
32.
This study examines how uncertainty associated with the spatial scale of climate change scenarios influences estimates of soybean and sorghum yield response in the southeastern United States. We investigated response using coarse (300-km, CSIRO) and fine (50-km, RCM) scale climate change scenarios and considering climate changes alone, climate changes with CO2 fertilization, and climate changes with CO2 fertilization and adaptation. Relative to yields simulatedunder a current, control climate scenario, domain-wide soybean yield decreased by 49% with the coarse-scale climate change scenario alone, and by26% with consideration for CO2 fertilization. By contrast, thefine-scale climate change scenario generally exhibited higher temperatures and lower precipitation in the summer months resulting in greater yield decreases (69% for climate change alone and 54% with CO2fertilization). Changing planting date and shifting cultivars mitigated impacts, but yield still decreased by 8% and 18% respectively for the coarse andfine climate change scenarios. The results were similar for sorghum. Yield decreased by 51%, 42%, and 15% in response to fine-scaleclimate change alone, CO2 fertilization, and adaptation cases, respectively– significantly worse than with the coarse-scale (CSIRO) scenarios. Adaptation strategies tempered the impacts of moisture and temperature stress during pod-fill and grain-fill periods and also differed with respect to the scale of the climate change scenario.  相似文献   
33.
The detection of magnetic field variations as a signature of flaring activity is one of the main goals in solar physics. Past efforts gave apparently no unambiguous observations of systematic changes. In the present study, we discuss recent results from observations that scaling laws of turbulent current helicity inside a given flaring active region change in response to large flares in that active region. Such changes can be related to the evolution of current structures by a simple geometrical argument, which has been tested using high Reynolds number direct numerical simulations of the MHD equations. Interpretation of the observed data within this picture indicates that the change in scaling behavior of the current helicity seems to be associated with a topological reorganization of the footpoint of the magnetic field loops, namely with the dissipation of small scales structures in turbulent media.  相似文献   
34.
Manuella  F. C.  Carbone  S. 《Geotectonics》2019,53(2):239-250
Geotectonics - The Earth’s lithosphere is commonly investigated by both direct and indirect methods, corresponding to rock sampling and geophysical surveys, respectively. The interpretation...  相似文献   
35.
36.
37.
We have constructed the first all-sky cosmic microwave background (CMB) temperature and polarization lensed maps based on a high-resolution cosmological N -body simulation, the Millennium Simulation (MS). We have exploited the lensing potential map obtained using a previously developed map-making procedure which integrates along the line-of-sight the MS dark matter distribution by stacking and randomizing the simulation boxes up to   z = 127  , and which semi-analytically supplies the large-scale power in the angular lensing potential that is not correctly sampled by the N -body simulation. The lensed sky has been obtained by properly modifying the latest version of the LensPix code to account for the MS structures. We have also produced all-sky lensed maps of the so-called  ψ E   and  ψ B   potentials, which are directly related to the electric and magnetic types of polarization. The angular power spectra of the simulated lensed temperature and polarization maps agree well with semi-analytic estimates up to   l ≤ 2500  , while on smaller scales we find a slight excess of power which we interpret as being due to non-linear clustering in the MS. We also observe how non-linear lensing power in the polarized CMB is transferred to large angular scales by suitably misaligned modes in the CMB and the lensing potential. This work is relevant in view of the future CMB probes, as a way to analyse the lensed sky and disentangle the contribution from primordial gravitational waves.  相似文献   
38.
We use the large cosmological Millennium Simulation (MS) to construct the first all-sky maps of the lensing potential and the angle, aiming at gravitational lensing of the cosmic microwave background (CMB), with the goal of properly including small-scale non-linearities and non-Gaussianity. Exploiting the Born approximation, we implement a map-making procedure based on direct ray tracing through the gravitational potential of the MS. We stack the simulation box in redshift shells up to z ∼ 11, producing continuous all-sky maps with arcmin angular resolution. A randomization scheme avoids the repetition of structures along the line of sight, and structures larger than the MS box size are added to supply the missing contribution of large-scale (LS) structures to the lensing signal. The angular power spectra of the projected lensing potential and the deflection-angle modulus agree quite well with semi-analytic estimates on scales down to a few arcmin, while we find a slight excess of power on small scales, which we interpret as being due to non-linear clustering in the MS. Our map-making procedure, combined with the LS adding technique, is ideally suited for studying lensing of CMB anisotropies, for analysing cross-correlations with foreground structures, or other secondary CMB anisotropies such as the Rees–Sciama effect.  相似文献   
39.
Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994–1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano's summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred “passively” within a fracture system opened by external forces.  相似文献   
40.
Dealing with the potential consequences of climate change on society requires scenarios that accurately project future climate. Uncertainties about future greenhouse gas emissions, climate sensitivity to radiative forcing, and limits to simulating a complex system constrain this objective. This paper reviews literature outlining the inherent challenges of creating future climate scenarios from general circulation models; it examines methods used to improve their interpretation and use; and it explores approaches taken to recognize and address uncertainty when investigating interactions between climate and society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号