首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36976篇
  免费   592篇
  国内免费   579篇
测绘学   933篇
大气科学   3066篇
地球物理   7395篇
地质学   12195篇
海洋学   3358篇
天文学   8693篇
综合类   120篇
自然地理   2387篇
  2021年   198篇
  2020年   257篇
  2019年   255篇
  2018年   611篇
  2017年   563篇
  2016年   878篇
  2015年   619篇
  2014年   846篇
  2013年   1882篇
  2012年   1032篇
  2011年   1448篇
  2010年   1190篇
  2009年   1770篇
  2008年   1568篇
  2007年   1490篇
  2006年   1404篇
  2005年   1284篇
  2004年   1206篇
  2003年   1166篇
  2002年   1090篇
  2001年   975篇
  2000年   983篇
  1999年   917篇
  1998年   834篇
  1997年   841篇
  1996年   720篇
  1995年   645篇
  1994年   561篇
  1993年   514篇
  1992年   510篇
  1991年   480篇
  1990年   476篇
  1989年   418篇
  1988年   402篇
  1987年   449篇
  1986年   433篇
  1985年   522篇
  1984年   582篇
  1983年   558篇
  1982年   519篇
  1981年   462篇
  1980年   435篇
  1979年   397篇
  1978年   412篇
  1977年   358篇
  1976年   323篇
  1975年   336篇
  1974年   336篇
  1973年   338篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
981.
Data on East Australian Current (EAC) warm-core eddies were obtained over the period 1976–1978 by the Department of Defence and the Commonwealth Scientific and Industrial Research Organization (CSIRO). In that time we have learned that warm eddies form by pinch-off of poleward EAC meanders, can coalesce with the EAC and appear generally similar to Gulf Stream, Kuroshio and other current system eddies. Two eddies were tracked over 1977–1978 with satellite buoys and one (eddy B) was repeatedly studied over eleven months. A deep winter core formed by winter convective cooling and the following summer a new surface mixed layer formed on top of the core. The seasonal changes have been analysed for heat content and changes in dynamic relief. The eddy decayed with a time constant of 650 ± 150 days, due to upwelling below the seasonal thermocline. Surface cooling had little effect on eddy lifetime. The eddy contracted horizontally, possibly after some interaction with the EAC, giving rise to eddy spin-up with increasing age. Surface currents increased after eleven months to 2.0 m s?1. The dynamic relief during summer was also apparently boosted by contact with the EAC. Eddy B was observed to coalesce with a new meander of the EAC rather than drift away to the south. It is proposed that the formation of these eddies is governed by the westward propagation of the baroclinic Rossby wave known as the Tasman Front. Pinch-off of eddies adjacent to the coast and the variable flow of the EAC may be caused by the baroclinic wave ‘breaking’ on the coast. The eddy formation rate is about two per year and most eddies coalesce with the EAC and do not escape to the south. Eddies coalesce and re-separate, creating many subsurface isothermal layers from old cores south of 34°S.  相似文献   
982.
Textural isotopic and microfossil data from two gravity cores obtained in Saguenay Fjord, Quebec, suggest that a distinctive sandy clay bed was deposited as the result of a major landslide in the Saguenay River basin. Pb-210 dating of the cores indicate that the bed is of similar age to the magnitude 7 earthquake of February 5, 1663. The slide involved sensitive marine clays and may have occurred in two stages. Slide sediments carried into the Saguenay River channel were probably reworked and subsequently transported down the Fjord basin as two distinct cohesionless mass flows. Fine clay laminae that overlie the older mass flow bed record the modulation of depositional processes by tidal currents for several weeks after this event.  相似文献   
983.
Measurements of subsurface irradiance spectra in the ocean consistently indicate intensities of long-wavelength visible light (589 nm) greater than could be derived from the penetration of sunlight. This can be attributed to natural fluorescence and/or to spectral crosstalk due to light leakage through the blocking filters of each discrete detector. A comparison of observed profiles with modelled contributions from these two possible sources indicates that both factors are contributing. At 671 and 694 nm wavelength, the excess signal appears to be predominantly fluorescence while that at 589 nm is mostly crosstalk. Both effects appear to be important at 625 nm although the amount of excess light is small compared to the other wavelengths.The above observations and interpretations are consistent with the optical design of the instrument used and the shape of natural irradiance spectra. Fluorescence efficiencies derived from the irradiance measurements correlate well with measuredin situ fluorescence.  相似文献   
984.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   
985.
A simple exponential equation is used to describe photosynthetic rate as a function of light intensity for a variety of unicellular algae and higher plants where photosynthesis is proportional to (1-e−β1). The parameter β ( ) is derived by a simultaneous curve-fitting method, where I is incident quantum-flux density. The exponential equation is tested against a wide range of data and is found to adequately describe P vs. I curves. The errors associated with photosynthetic parameters are calculated. A simplified statistical model (Poisson) of photon capture provides a biophysical basis for the equation and for its ability to fit a range of light intensities. The exponential equation provides a non-subjective simultaneous curve fitting estimate for photosynthetic efficiency (a) which is less ambiguous than subjective methods: subjective methods assume that a linear region of the P vs. I curve is readily identifiable. Photosynthetic parameters β and a are used widely in aquatic studies to define photosynthesis at low quantum flux. These parameters are particularly important in estuarine environments where high suspended-material concentrations and high diffuse-light extinction coefficients are commonly encountered.  相似文献   
986.
Mud is a complex mixture of water and solid particles and acoustics can help on its control. The mud layer, as an acoustic channel, is characterized by its propagation constant relating the wave frequency, the sound velocity, and the energy absorption. If the input acoustic pulse is known, it is feasible to easily characterize the mud layer as a low pass filter (absorption); if it is also possible to insonify the mud with sound of both low and high frequencies, the sound speed of the mud mixture can be evaluated, and the propagation constant is then known.  相似文献   
987.
The ridge located between 31° S and 34°30′S is spreading at a rate of 35 mm yr−1, a transitional velocity between the very slow (≤20 mm yr−1) opening rates of the North Atlantic and Southwest Indian Oceans, and the intermediate rates (60 mm yr−1) of the northern limb of the East Pacific Rise, and the Galapagos and Juan de Fuca Ridges. A synthesis of multi-narrow beam, magnetics and gravity data document that in this area the ridge represents a dynamically evolving system. Here the ridge is partitioned into an ensemble of six distinct segments of variable lengths (12 to 100 km) by two transform faults (first-order discontinuities) and three small offset (< 30 km) discontinuities (second-order discontinuities) that behave non-rigidly creating complex and heterogeneous morphotectonic patterns that are not parallel to flow lines. The offset magnitudes of both the first and second-order discontinuities change in response to differential asymmetric spreading. In addition, along the fossil trace of second-order discontinuities, the lengths of abyssal hills located to either side of a discordant zone are observed to lengthen and shorten creating a saw-toothed pattern. Although the spreading rate remains the same along the length of the ridge studied, the morphology of the spreading segments varies from a deep median valley with characteristics analogous to the rift segments of the North Atlantic to a gently rifted axial bulge that is indistinguishable from the shape and relief of the intermediate rate spreading centers of the East Pacific Rise (i.e., 21°N). Like other carefully surveyed ridge segments at slow and fast rates of accretion, the along-axis profiles of each ridge segment are distinctly convex upwards, and exhibit along-strike changes in relief of 500m to 1500 between the shallowest portion of the segment (approximate center) and the segment ends. Such spatial variations create marked along-axis changes in the morphology and relief of each segment. A relatively low mantle Bouguer anomaly is known to be associated with the ridge segment characterized by a gently rifted axial bulge and is interpreted to indicate the presence of focused mantle upwelling (Kuo and Forsyth, 1988). Moreover, the terrain at the ends of each segment are known to be highly magnetized compared to the centers of each segment (Carbotte et al, 1990). Taken together, these data clearly establish that these profound spatial variations in ridge segment properties between adjoining segments, and along and across each segment, indicate that the upper mantle processes responsible for the formation of this contrasting architecture are not solely related to passive upwelling of the asthenosphere beneath the ridge axis. Rather, there must be differences in the thermal and mechanical structure of the crust and upper mantle between and along the ridge segments to explain these spatial variations in axial topography, crustal structure and magnetization. These results are consistent with the results of investigations from other parts of the ridge and suggest that the emplacement of magma is highly focused along segments and positioned beneath the depth minimum of a given segment. The profound differences between segments indicate that the processes governing the behavior of upwelling mantle are decoupled and the variations in the patterns of axis flanking morphology and rate of accretion indicate that processes controlling upwelling and melt production vary markedly in time as well. At this spreading rate and in this area, the accretionary processes are clearly three-dimensional. In addition, the morphology of a ridge segment is not governed so much by opening rate as by the thermal structure of the mantle which underlies the segment.  相似文献   
988.
Multipole expansions for wave diffraction and radiation in deep water   总被引:1,自引:0,他引:1  
A multipole expansion of the velocity potential is described for two- and three-dimensional wave diffraction and radiation problems. The velocity potential is expressed in terms of a series of multipole potentials. The wave terms and the local disturbance terms are represented by separated multipole potentials. Floating bodies and submerged bodies are treated in the same way. This approach differs from that of some other authors, who considered floating bodies and submerged bodies separately and derived entirely different multipoles. Semi-analytical solutions for a circular cylinder in two-dimensional motions are given. It is found that the local disturbance decays rapidly and steadily. The general application of the multipole expansion to arbitrary geometries is also presented, based on a method coupling multipoles to a boundary integral expression. Numerical results for several floating and submerged cylinders are presented.  相似文献   
989.
Current specification of the ocean wave environment for the design of offshore platforms does not adequately describe the directional nature of a real seaway. The strong wave frequency dependent nature of the directional behavior of observed seas is often over-simplified for design. A general formulation encompassing a wide range of directional sea models is presented. Parameter values used in some of the more popular directional sea models are examined. Approximate expressions for the two frequency dependent parameters in a modified Longuet-Higgins cosine wave spreading model are presented. A general procedure which allows an engineer to estimate parameters for alternate wave spreading models is discussed. To illustrate this procedure an empirically based modified cosine spreading model is used as the basis to estimate frequency dependent parameters for circular normal and wrapped Gaussian wave spreading models. A comparison of the contours of the various directional sea models and the prediction of the root-mean-square velocity distribution is presented.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号