首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116898篇
  免费   2400篇
  国内免费   1165篇
测绘学   2826篇
大气科学   8825篇
地球物理   24051篇
地质学   40483篇
海洋学   10421篇
天文学   25480篇
综合类   309篇
自然地理   8068篇
  2021年   853篇
  2020年   1059篇
  2019年   1139篇
  2018年   2214篇
  2017年   2171篇
  2016年   2829篇
  2015年   1842篇
  2014年   2774篇
  2013年   5883篇
  2012年   3067篇
  2011年   4340篇
  2010年   3818篇
  2009年   5202篇
  2008年   4688篇
  2007年   4519篇
  2006年   4360篇
  2005年   3585篇
  2004年   3626篇
  2003年   3464篇
  2002年   3257篇
  2001年   2874篇
  2000年   2805篇
  1999年   2481篇
  1998年   2398篇
  1997年   2379篇
  1996年   2114篇
  1995年   1971篇
  1994年   1771篇
  1993年   1634篇
  1992年   1515篇
  1991年   1438篇
  1990年   1574篇
  1989年   1415篇
  1988年   1306篇
  1987年   1494篇
  1986年   1410篇
  1985年   1721篇
  1984年   1934篇
  1983年   1876篇
  1982年   1714篇
  1981年   1603篇
  1980年   1443篇
  1979年   1371篇
  1978年   1412篇
  1977年   1290篇
  1976年   1219篇
  1975年   1180篇
  1974年   1182篇
  1973年   1226篇
  1972年   772篇
排序方式: 共有10000条查询结果,搜索用时 722 毫秒
991.
992.
993.
994.
This paper reviews the geochemical, isotopic (2H, 18O, 13C, 3H and 14C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na–Cl/Ca–OH mineral waters from the Cabeço de Vide region (Central-Portugal). Water–rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeço de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg–HCO3 type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na–Cl/Ca–OH mineral waters of Cabeço de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeço de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeço de Vide mineral waters. Similar δ2H and δ18O suggest a common meteoric origin and that the Mg–HCO3 type waters have evolved towards Cabeço de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca–HCO3 to Mg–HCO3 waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO2 (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeço de Vide mineral waters was determined as 2790 ± 40 a BP, on the basis of 14C and 13C values, which is in agreement with the 3H concentrations being below the detection limit.  相似文献   
995.
Sulfate-reducing passive bioreactors have proved to be an effective technology for the treatment of acid mine drainage (AMD) contaminated waters over relatively short periods of time (1–5 a). However, long-term efficiency can be limited by several factors including problems related to the hydraulic properties of the reactive mixture. In this study, the effect of two hydraulic retention times (HRTs) of 7.3 d and 10 d on the performance of passive bioreactors was evaluated over an 11-month period for the treatment of a highly contaminated AMD. Evolution of the porosity and hydraulic conductivity of the reactive mixture was also evaluated during the 15-month operation of two bioreactors. Results indicated that bioreactors were effective at both HRTs for increasing the pH and alkalinity of contaminated water and for SO4 and metal removal (60–82% for Fe and up to 99.9% for Cd, Ni and Zn). Although the quality of treated effluent was significantly improved with the 10 d HRT compared to the 7.3 d HRT, results showed that the higher HRT reduced the porosity and the permeability of the reactive mixture which might lead to hydraulic related problems and, eventually, to limited efficiency in long-term operation compared to a shorter HRT. The choice of HRT for a passive bioreactor must therefore consider both the desired quality of treated effluent and the potential for deterioration of hydraulic properties in the reactive mixture.  相似文献   
996.
Column bioreactors were used for studying mechanisms of metal removal, assessment of long-term stability of spent reactive mixtures, as well as potential metal mobility after treating highly contaminated acid mine drainage (AMD; pH 2.9–5.7). Several physicochemical, microbiological, and mineralogical analyses were performed on spent reactive mixtures collected from 4 bioreactors, which were tested in duplicate for two hydraulic retention times (7.3d and 10d), with downward flow over an 11-month period. Consistent with the high metal concentrations in the AMD feed, and with low metal concentrations measured in the treated effluent, the physicochemical analyses indicated very high concentrations of metals (Fe, Mn, Cd, Ni, and Zn) in the top and bottom layers of the reactive mixtures from all columns. Moreover, the concentrations of Fe (50.8–57.8 g/kg) and Mn (0.53–0.70 g/kg) were up to twice as high in the bottom layers, whereas the concentrations of Cd (6.77–13.3 g/kg), Ni (1.80–5.19 g/kg) and Zn (2.53–13.2 g/kg) were up to 50-times higher in the top layers. Chemical extractions and elemental analysis gave consistent results, which indicated a low fraction of metals removed as sulfides (up to 15% of total metals recovered in spent reactive mixtures). Moreover, Fe and Mn were found in a more stable chemical form (residual fraction was 42–74% for Mn and 30–77% for Fe) relative to Cd, Ni or Zn, which seemed more weakly bound (oxidisable/reducible fractions) and showed higher potential mobility. Besides identifying (oxy)hydroxide and carbonate minerals, the mineralogical analyses identified metal sulfides containing Fe, Cd, Ni and Zn. Metal removal mechanisms were, therefore, mainly adsorption and other binding mechanisms with organic matter (for Cd, Ni and Zn), and the precipitation as (oxy)hydroxide minerals (for Fe and Mn). After 15 months, however, the column bioreactors did not lose their capacity for removing metals from the AMD. Although the metals were immobile during the bioreactor treatment, their mobility could increase from spent reactive mixtures, if stored inappropriately. Metal recovery by acidic leaching of spent substrates at the end of bioreactor operation could be an alternative.  相似文献   
997.
Elevated As concentrations in groundwater in the eastern United States have been recognized predominantly in the accretionary geologic terranes of northern New England. A retrospective examination of more than 18,000 existing groundwater samples from the Pennsylvania Department of Environmental Protection (PA DEP) Drinking Water and Sampling Information System database indicates that elevated groundwater As concentrations occur throughout the northern half of the Piedmont Province of Pennsylvania. Chemical analyses of 53 samples collected in 2005 from drinking water wells in this area all had detectable As, and 23% of these samples contained elevated (>133 nmol/L or >10 μg/L) concentrations of As. Elevated concentrations of As in the groundwater samples were most common in the Mesozoic sedimentary strata composed of sandstone and red mudstone with interbedded gray shale, and gray to black siltstone and shale. Arsenic was typically not elevated in groundwater of diabase intrusions of the Newark Basin or in crystalline and calcareous aquifers to the north of the Newark Basin. Geochemical parameters such as pH and oxidation–reduction potential can indicate mobility mechanisms of As in some regions. In this area, measured groundwater conditions were predominantly oxidizing (Eh > +50 mV), and more than 85% of samples contained arsenate as the dominant As species. Variations in pH were strongly correlated to the As concentration, with highest As concentrations observed at pH values greater than 6.4. The original source of As is most likely the black and gray shales that contain some arsenian pyrite with groundwater concentrations likely to be controlled by adsorption/desorption reactions with Fe oxides in the red mudstone aquifer materials.  相似文献   
998.
999.
High levels of Cd and Zn in Jamaican soils observed in geochemical surveys are related to the presence of phosphorites of possible Late-Miocene or Pliocene age. The trace element and REE geochemistry of the phosphorites, together with SEM studies, indicate a guano origin for the phosphorites. No specific host minerals for Cd could be identified in the fossiliferous phosphorite which is characterized by uniquely high levels of Cd, Zn, Ag, Be, U and Y. However, in the soil Cd is present in lithiophorite and a complex history of pedological development is preserved in the aluminous–goethite present in the soil. The unique guano signature is preserved in the soil despite the fact that guanos themselves have either not been observed or have been destroyed by continuing karst and soil development. The phosphorite geochemical signature can be traced in the data of a 1988 island-wide soil geochemical survey, identifying areas where the Palaeo-environment that supported bird ‘rookeries’ existed in the Late-Miocene or Pliocene.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号